Canonical Duality Theory: Connections between nonconvex mechanics and global optimization

نویسندگان

  • David Y. Gao
  • Hanif D. Sherali
چکیده

This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanics and Lagrange duality in global optimization are also revealed within the framework of the canonical duality theory. Based on this framework, traditional saddle Lagrange duality and the so-called bi-duality theory, discovered in convex Hamiltonian systems and d.c. programming, are presented in a unified way; together, they serve as a foundation for the triality theory in nonconvex systems. Applications are illustrated by a class of nonconvex problems in continuum mechanics and global optimization. It is shown that by the use of the canonical dual transformation, these nonconvex constrained primal problems can be converted into certain simple canonical dual problems, which can be solved to obtain all extremal points. Optimality conditions (both local and global) for these extrema can be identified by the triality theory. Some new results on general nonconvex programming with nonlinear constraints are also presented as applications of this canonical duality theory. This review brings some fundamentally new insights into nonconvex mechanics, global optimization, and computational science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality

Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...

متن کامل

Global optimal solutions to nonconvex optimisation problems with a sum of double-well and log-sum-exp functions

This paper presents a canonical dual approach for solving a nonconvex global optimisation problem with a sum of double-well and log-sum-exp functions. Such a problem arises extensively in mechanics, robot designing, information theory and network communication systems. It includes fourth-order polynomial minimisation problems and minimax problems. Based on the canonical duality theory, this non...

متن کامل

Nonconvex Semi-linear Problems and Canonical Duality Solutions

This paper presents a brief review and some new developments on the canonical duality theory with applications to a class of variational problems in nonconvex mechanics and global optimization. These nonconvex problems are directly related to a large class of semi-linear partial differential equations in mathematical physics including phase transitions, post-buckling of large deformed beam mode...

متن کامل

Solutions and optimality criteria for nonconvex quadratic-exponential minimization problem

This paper presents a set of complete solutions and optimality conditions for a nonconvex quadratic-exponential optimization problem. By using the canonical duality theory developed by the first author, the nonconvex primal problem in n-dimensional space can be converted into an one-dimensional canonical dual problem with zero duality gap, which can be solved easily to obtain all dual solutions...

متن کامل

Canonical dual solutions to nonconvex radial basis neural network optimization problem

Radial Basis Functions Neural Networks (RBFNNs) are tools widely used in regression problems. One of their principal drawbacks is that the formulation corresponding to the training with the supervision of both the centers and the weights is a highly non-convex optimization problem, which leads to some fundamentally difficulties for traditional optimization theory and methods. This paper present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008