CCRM: An Effective Algorithm for Mining Commodity Information from Threaded Chinese Customer Reviews

نویسندگان

  • Huizhong Duan
  • Shenghua Bao
  • Yong Yu
چکیده

This paper is concerned with the problem of mining commodity information from threaded Chinese customer reviews. Chinese online commodity forums, which are developing rapidly, provide a good environment for customers to share reviews. However, due to noises and navigational limitations, it is hard to have a clear view of a commodity from thousands of related reviews. Further more, due to different characters between Chinese and English, Researching approaches may vary a lot. This paper aims to automatically mine out key information from commodity reviews. An effective algorithm, i.e. Chinese Commodity Review Miner (CCRM) is proposed. The algorithm can be divided into two parts. First, we propose an efficient rule based algorithm for commodity feature extraction as well as a probabilistic model for feature ranking. Second, we propose a top-to-down algorithm to reorganize the extracted features into hierarchical structure. A prototype system based on CCRM is also implemented. Using CCRM, users can easily acquire the outline of a commodity, and navigate freely in it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)

As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...

متن کامل

Mining Frequent and Infrequent Features from Chinese Customer Reviews

Customer reviews serve as a feedback mechanism that can help suppliers enhance their products and services, then gain competitive advantages. Mining Product features from reviews are expected to further investigate the views and attitudes of customers. This study is focus on one subtask of sentiment analysis. We want to extract the product frequent and infrequent features from Chinese customer ...

متن کامل

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

Designing Ranking System for Chinese Product Search Engine Based on Customer Reviews

With the spread of e-commerce platforms, it becomes extremely difficult for the costumer to choose the right product from a large number of products, and different sellers based only on his/her own experience, product picture and meta-data. Customer’s reviews present a rich source of information that have an enormous impact on the purchasing decision of the potential consumers, but reading all ...

متن کامل

Application of text mining for customer evaluations in commercial banking

Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007