Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

نویسندگان

  • Ying-Chung Chen
  • Chih-Yu Wen
  • Chih-Ming Wang
  • Chia-Wei Ho
  • Shih-Yuan Lin
  • Ying-Lin Chen
  • Jiazhao Wang
چکیده

In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs), and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

Asymmetric Flexible Supercapacitor Stack

Electrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs) have been synthesized by catalytic chemical vapo...

متن کامل

Evaluation of Graphene/WO3 and Graphene/CeOx Structures as Electrodes for Supercapacitor Applications

The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO ...

متن کامل

Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications.

Metal nanowires show promise in a broad range of applications, but many synthesis techniques require complex methodologies. We have developed a method for depositing patterned aluminum nanowires (Al NWs) onto Cu, Ni, and stainless steel substrates using low-pressure decomposition of trimethylamine alane complex. The NWs exhibited an average diameter in the range from 45 to 85 nm, were crystalli...

متن کامل

Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications

Carbon sphere (CS)@ZnO core-shell nanocomposites were successfully prepared through facile low-temperature water-bath method without annealing treatment. The morphology and the microstructure of samples were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. ZnO nanoparticles with several nanometers in size de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016