The matrix-valued hypergeometric equation.

نویسنده

  • Juan A Tirao
چکیده

The hypergeometric differential equation was found by Euler [Euler, L. (1769) Opera Omnia Ser. 1, 11-13] and was extensively studied by Gauss [Gauss, C. F. (1812) Comm. Soc. Reg. Sci. II 3, 123-162], Kummer [Kummer, E. J. (1836) Riene Ang. Math. 15, 39-83; Kummer, E. J. (1836) Riene Ang. Math. 15, 127-172], and Riemann [Riemann, B. (1857) K. Gess. Wiss. 7, 1-24]. The hypergeometric function known also as Gauss' function is the unique solution of the hypergeometric equation analytic at z = 0 and with value 1 at z = 0. This function, because of its remarkable properties, has been used for centuries in the whole subject of special functions. In this article we give a matrix-valued analog of the hypergeometric differential equation and of Gauss' function. One can only speculate that many of the connections that made Gauss' function a vital part of mathematics at the end of the 20th century will be shared by its matrix-valued version, discussed here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Matrix Valued Hypergeometric Equation

Abstract. The matrix valued analog of the Euler’s hypergeometric differential equation was introduced by Tirao in [1]. This equation arises in the study of matrix valued spherical functions and in the theory of matrix valued orthogonal polynomials. The goal of this paper is to extend naturally the number of parameters of Tirao’s equation in order to get a generalized matrix valued hypergeometri...

متن کامل

Noncommutative Hypergeometric and Basic Hypergeometric Equations

Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100 (14) (2003), 8138–8141] considered a matrix-valued analogue of the 2F1 Gauß hypergeometric function and showed that it is the unique solution of a matrix-valued hypergeometric equation analytic at z = 0 with value I, the identity matrix, at z = 0. We give an independent proof of Tirao’s result, extended to the more general setting of hypergeometr...

متن کامل

Noncommutative Extensions of Ramanujan’s 1ψ1 Summation ∗

Using functional equations, we derive noncommutative extensions of Ramanujan's 1 ψ 1 summation. 1. Introduction. Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have been the subject of recent study, see e.g. the papers by Duval and Ovsienko [DO], Grünbaum [G], Tirao [T], and some of the references mentioned therein. Of course, t...

متن کامل

Matrix-valued little q-Jacobi polynomials

Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the 2 × 2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Rodrigues formula, three-term recurrence relation and its relation to matrix-valued q-hypergeometric series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on the m...

متن کامل

A Hypergeometric Function Transform and Matrix-valued Orthogonal Polynomials

The spectral decomposition for an explicit second-order differential operator T is determined. The spectrum consists of a continuous part with multiplicity two, a continuous part with multiplicity one, and a finite discrete part with multiplicity one. The spectral analysis gives rise to a generalized Fourier transform with an explicit hypergeometric function as a kernel. Using Jacobi polynomial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 14  شماره 

صفحات  -

تاریخ انتشار 2003