Two-Level Space-Time Domain Decomposition Methods for Three-Dimensional Unsteady Inverse Source Problems

نویسندگان

  • Xiaomao Deng
  • Xiao-Chuan Cai
  • Jun Zou
چکیده

Abstract As the number of processor cores on supercomputers becomes larger and larger, algorithms with high degree of parallelism attract more attention. In this work, we propose a two-level space-time domain decomposition method for solving an inverse source problem associated with the time-dependent convection-diffusion equation in three dimensions. We introduce a mixed finite element/finite difference method and a one-level and a two-level space-time parallel domain decomposition preconditioner for the Karush-Kuhn-Tucker system induced from reformulating the inverse problem as an output least-squares optimization problem in the entire space-time domain. The new full space-time approach eliminates the sequential steps in the optimization outer loop and the inner forward and backward time marching processes, thus achieves high degree of parallelism. Numerical experiments validate that this approach is effective and robust for recovering unsteady moving sources. We will present strong scalability results obtained on a supercomputer with more than 1,000 processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-level space-time domain decomposition methods for unsteady inverse problems

As the number of processor cores on supercomputers becomes larger and larger, algorithms with high degree of parallelism attract more attention. In this work, we propose a novel space-time coupled algorithm for solving an inverse problem associated with the time-dependent convection-diffusion equation in three dimensions. We introduce a mixed finite element/finite difference method and a one-le...

متن کامل

A Parallel Space-time Domain Decomposition Method for Unsteady Source Inversion Problems

In this paper, we propose a parallel space-time domain decomposition method for solving an unsteady source identification problem governed by the linear convection-diffusion equation. Traditional approaches require to solve repeatedly a forward parabolic system, an adjoint system and a system with respect to the unknown sources. The three systems have to be solved one after another. These seque...

متن کامل

Substructuring domain decomposition scheme for unsteady problems

Domain decomposition methods are used for approximate solving boundary problems for partial differential equations on parallel computing systems. Specific features of unsteady problems are taken into account in the most complete way in iteration-free schemes of domain decomposition. Regionally-additive schemes are based on different classes of splitting schemes. In this paper we highlight a cla...

متن کامل

مقایسه نتایج حل ترموالاستیک نیم‌فضا میان

In this paper, transfinite element method is used to analyze the two dimensional thermoelasticity problems. A comparison is made between the thermoelastic analysis results of the classical theory and theories with one or two relaxation times (i.e. L-S and G-L theories), for the half space problem. Governing equations are transformed to Laplace domain and then, node variables are calculated by t...

متن کامل

Estimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System

In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016