siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription.

نویسندگان

  • Tetsushi Iida
  • Jun-ichi Nakayama
  • Danesh Moazed
چکیده

Heterochromatic gene silencing at the pericentromeric DNA repeats in fission yeast requires the RNA interference (RNAi) machinery. The RNA-induced transcriptional silencing (RITS) complex mediates histone H3 lysine 9 (H3K9) methylation and recruits the RNA-dependent RNA polymerase complex (RDRC) to promote double-stranded RNA (dsRNA) synthesis and siRNA generation. Here we show that ectopic expression of a long hairpin RNA bypasses the requirement for chromatin-dependent steps in siRNA generation. The ability of hairpin-produced siRNAs to silence homologous sequences in trans is subject to local chromatin structure, requires HP1, and correlates with antisense transcription at the target locus. Furthermore, although hairpin siRNAs can be produced in the absence of RDRC, trans-silencing of reporter genes by hairpin-produced siRNAs is completely dependent on the dsRNA synthesis activity of RDRC. These results provide insights into the regulation of siRNA action and reveal roles for cis-dsRNA synthesis and HP1 in siRNA-mediated heterochromatin assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere Binding Protein Taz1 Establishes Swi6 Heterochromatin Independently of RNAi at Telomeres

BACKGROUND The telomere is a specialized heterochromatin conserved among eukaryotes. However, it remains unknown how heterochromatin protein 1 (HP1) is recruited to telomeres and how telomere heterochromatin is formed. In fission yeast, the RNAi (RNA interference)-RITS (RNA-induced initiation of transcriptional silencing) pathway initiates heterochromatin formation at the centromeres and the si...

متن کامل

Silkworm HP1a transcriptionally enhances highly expressed euchromatic genes via association with their transcription start sites

Heterochromatin protein 1 (HP1) is an evolutionarily conserved protein across different eukaryotic species and is crucial for heterochromatin establishment and maintenance. The silkworm, Bombyx mori, encodes two HP1 proteins, BmHP1a and BmHP1b. In order to investigate the role of BmHP1a in transcriptional regulation, we performed genome-wide analyses of the transcriptome, transcription start si...

متن کامل

HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA-silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes d...

متن کامل

Heterochromatin Protein 1 (HP1) Proteins Do Not Drive Pericentromeric Cohesin Enrichment in Human Cells

Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required f...

متن کامل

HP1 Recruits Activity-Dependent Neuroprotective Protein to H3K9me3 Marked Pericentromeric Heterochromatin for Silencing of Major Satellite Repeats

H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2008