Molecular cloning and nucleotide sequence of a putative trpDC(F)BA operon in Buchnera aphidicola (endosymbiont of the aphid Schizaphis graminum).

نویسندگان

  • M A Munson
  • P Baumann
چکیده

A 8,392-nucleotide-long DNA fragment from Buchnera aphidicola (endosymbiont of the aphid Schizaphis graminum) contained five genes of the tryptophan biosynthetic pathway [trpDC(F)BA] which code for enzymes converting anthranilate to tryptophan. These genes are probably arranged as a single transcription unit. Downstream of the trp genes were ORF-V, ORF-VI, and P14, three open reading frames which in Escherichia coli are also found downstream of the trp operon. Upstream of the B. aphidicola trp genes were two unidentified open reading frames, one of which potentially codes for a membrane-spanning protein with a leader sequence. Evidence for the presence of trpB in the endosymbionts of eight additional species of aphids and two species of whiteflies was obtained. These results as well as those of A. E. Douglas and W. A. Prosser (J. Insect Physiol. 38:565-568, 1992) suggest that aphid endosymbionts are capable of synthesizing tryptophan, which is required by the aphid host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole Genome Sequence of the Soybean Aphid Endosymbiont Buchnera aphidicola and Genetic Differentiation among Biotype-Specific Strains

Endosymbiosis with microorganisms is common in insects, with more than 10% of species requiring the metabolic capabilities of intracellular bacteria for their nutrient acquisition. Aphids harbor an obligate mutualism with the vertically transferred endosymbiont, Buchnera aphidicola, which produces key nutrients lacking in the aphid's phloem-based diet that are necessary for normal development a...

متن کامل

Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont

The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole...

متن کامل

A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations

Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an e...

متن کامل

Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola.

Buchnera aphidicola, the obligate symbiont of aphids, has an extremely reduced genome, of which about 10% is devoted to the biosynthesis of essential amino acids needed by its hosts. Most regulatory genes for these pathways are absent, raising the question of whether and how transcription of these genes responds to the major shifts in dietary amino acid content encountered by aphids. Using full...

متن کامل

Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae).

The greenbug aphid, Schizaphis graminum (Rondani) has developed resistance to organophosphorus insecticides by the over-production of esterases that have been classified as Type I and Type II. The first twenty N-terminal amino acids of the Type I esterase were determined and used to design an oligonucleotide, which in conjunction with an active site primer derived from conserved sequences of ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 175 20  شماره 

صفحات  -

تاریخ انتشار 1993