Altered functional differentiation of mesoangioblasts in a genetic myopathy

نویسندگان

  • Claudia Altomare
  • Lucio Barile
  • Marcella Rocchetti
  • Luca Sala
  • Stefania Crippa
  • Maurilio Sampaolesi
  • Antonio Zaza
چکیده

Mutations underlying genetic cardiomyopathies might affect differentiation commitment of resident progenitor cells. Cardiac mesoangioblasts (cMabs) are multipotent progenitor cells resident in the myocardium. A switch from cardiac to skeletal muscle differentiation has been recently described in cMabs from β-sarcoglycan-null mice (βSG(-/-)), a murine model of genetic myopathy with early myocardial involvement. Although complementation with βSG gene was inconsequential, knock-in of miRNA669a (missing in βSG(-/-) cMabs) partially rescued the mutation-induced molecular phenotype. Here, we undertook a detailed evaluation of functional differentiation of βSG(-/-) cMabs and tested the effects of miRNA669a-induced rescue in vitro. To this end, cMabs were compared with neonatal cardiomyocytes (CMs) and skeletal muscle C2C12 cells, representative of cardiac and skeletal muscle respectively. Consistent with previous data on molecular patterns, electrophysiological and Ca(2+)-handling properties of βSG(-/-) cMabs were closer to C2C12 cells than to CM ones. Nevertheless, subtler aspects, including action potential contour, Ca(2+)-spark properties and RyR isoform expression, distinguished βSG(-/-) cMabs from C2C12 cells. Contrary to previous reports, wild-type cMabs failed to show functional differentiation towards either cell type. Knock-in of miRNA669a in βSG(-/-) cMabs rescued the wild-type functional phenotype, i.e. it completely prevented development of skeletal muscle functional responses. We conclude that miRNA669a expression, ablated by βSG deletion, may prevent functional differentiation of cMabs towards the skeletal muscle phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoangioblasts of inclusion-body myositis: a twofold tool to study pathogenic mechanisms and enhance defective muscle regeneration

Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtai...

متن کامل

MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle.

Inflammatory myopathies (IM) are acquired diseases of skeletal muscle comprising dermatomyositis (DM), polymyositis (PM), and inclusion-body myositis (IBM). Immunosuppressive therapies, usually beneficial for DM and PM, are poorly effective in IBM. We report the isolation and characterization of mesoangioblasts, vessel-associated stem cells, from diagnostic muscle biopsies of IM. The number of ...

متن کامل

TGFbeta/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts.

Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. The gene expression profile of four clonal derived lines of mesoangioblasts was determined by DNA micro-array analysis: it was similar in the four lines but different from 10T1/2 embryonic fibroblasts, used as comparison. Many known genes expresse...

متن کامل

Mitochondria determine the differentiation potential of cardiac mesoangioblasts.

An understanding of cardiac progenitor cell biology would facilitate their therapeutic potential for cardiomyocyte restoration and functional heart repair. Our previous studies identified cardiac mesoangioblasts as precommitted progenitor cells from the postnatal heart, which can be expanded in vitro and efficiently differentiated in vitro and in vivo to contribute new myocardium after injury.B...

متن کامل

Fusion-independent expression of functional ACh receptors in mouse mesoangioblast stem cells contacting muscle cells.

Mesoangioblasts are vessel-associated fetal stem cells that can be induced to differentiate into skeletal muscle, both in vitro and in vivo. Whether this is due to fusion or to transdifferentiation into bona fide satellite cells is still an open question, for mesoangioblasts as well as for other types of stem cells. The early steps of satellite cell myogenic differentiation involve MyoD activat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013