Macroscopic and microscopic observations of needle insertion into gels.

نویسندگان

  • Youri R J van Veen
  • Alex Jahya
  • Sarthak Misra
چکیده

Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle-gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity, needle diameter, gel elasticity, needle tip shape (including bevel angle) and insertion motion profile, are varied, while the maximum insertion force and maximum needle deflection are recorded. The needle tip and gel interactions are observed using confocal microscopic images. Observations indicate that increasing the insertion velocity and needle diameter results in larger insertion forces and smaller needle deflections. Varying the needle bevel angle from 8 degrees to 82 degrees results in the insertion force increasing monotonically, while the needle deflection does not. These variations are due to the coupling between gel rupture and tip compression interactions, which are observed during microscopic studies. Increasing the gel elasticity results in larger insertion forces and needle deflections. Varying the tip shapes demonstrates that bevel-tipped needles produce the largest deflection, but insertion force does not vary among the tested tip shapes. Insertion with different motion profiles are performed. Results show that adding I Hz rotational motion during linear insertion decreases the needle deflection. Increasing the rotational motion from I Hz to 5 Hz decreases the insertion force, while the needle deflection remains the same. A high-velocity (250 mm/s and 300 mm/s) tapping during insertion yields no significant decrease in needle deflection and a slight increase in insertion force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanics of Flexible Needles Robotically Steered through Soft Tissue

The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning and control of needle steering requires models of needle-tissue interaction. Previous kinematic m...

متن کامل

Investigation on the using of linco-spectin solution for in ovo administration in chicken embryo

Nowadays antibiotics are used on a large scale in veterinary and human medicine to cure or prevent diseases. Some antibiotics injected into hatching eggs to eliminate pathogens and prevention of egg transmission of disease. Adverse effects of drugs have always been a major concern. There is scantly information available about the safety and pathological alterations of lincosamide-aminocyclitol ...

متن کامل

Investigation on the using of linco-spectin solution for in ovo administration in chicken embryo

Nowadays antibiotics are used on a large scale in veterinary and human medicine to cure or prevent diseases. Some antibiotics injected into hatching eggs to eliminate pathogens and prevention of egg transmission of disease. Adverse effects of drugs have always been a major concern. There is scantly information available about the safety and pathological alterations of lincosamide-aminocyclitol ...

متن کامل

An in vitro assay of collagen fiber alignment by acupuncture needle rotation

BACKGROUND During traditional acupuncture therapy, soft tissues attach to and wind around the acupuncture needle. To study this phenomenon in a controlled and quantitative setting, we performed acupuncture needling in vitro. METHODS Acupuncture was simulated in vitro in three-dimensional, type I collagen gels prepared at 1.5 mg/ml, 2.0 mg/ml, and 2.5 mg/ml collagen, and either crosslinked wit...

متن کامل

Keratoconus experimentally produced in mice using collagenase

Introduction: Keratoconus is a relatively common disease of cornea in which structural changes within the cornea cause it to thin and change to a conical shape and scar at the central portion of cornea. So far, few methods and drug treatments were introduced due to both lack of accepted animal models to induce experimental keratoconus and limitation of research in human considering ethical issu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

دوره 226 6  شماره 

صفحات  -

تاریخ انتشار 2012