Whai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
نویسندگان
چکیده
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autoencoder, which integrates a deterministicupward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI are illustrated with experiments on big corpora.
منابع مشابه
Whai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpus and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation (DLDA), which infers posterior samples via a hybrid of stochasticgradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hi...
متن کاملWhai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarc...
متن کاملAutoencoding Variational Inference for Topic Models
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven difficult to apply to topic models in practice. We present what is to our knowledge t...
متن کاملComparing the Shape Parameters of Two Weibull Distributions Using Records: A Generalized Inference
The Weibull distribution is a very applicable model for the lifetime data. For inference about two Weibull distributions using records, the shape parameters of the distributions are usually considered equal. However, there is not an appropriate method for comparing the shape parameters in the literature. Therefore, comparing the shape parameters of two Weibull distributions is very important. I...
متن کاملRelational Deep Learning: A Deep Latent Variable Model for Link Prediction
Link prediction is a fundamental task in such areas as social network analysis, information retrieval, and bioinformatics. Usually link prediction methods use the link structures or node attributes as the sources of information. Recently, the relational topic model (RTM) and its variants have been proposed as hybrid methods that jointly model both sources of information and achieve very promisi...
متن کامل