Tunable fibre Bragg grating based optical cross connects using multi-port optical circulators: structure and crosstalk analyses
نویسندگان
چکیده
Tunable fibre Bragg grating (FBG)-based reconfigureably non-blocking optical cross connect (OXC) using multi-port optical circulators (MOCs) are proposed and presented. In an FBG–MOC-based OXC, system insertion loss, system differential insertion loss together with OXC dimensions have been analysed and compared with FBG–OC-based OXC structure using three-port optical circulators (OCs). Optical crosstalk in a multiwavlength FBG–OC-based OXC is discussed, and two crosstalk mechanisms, intraband and interband are identified. To compare FBG based OXC with other OXC structures, an analytical model of intraband optical crosstalk is presented. Results show that tunable FBGs based OXCs are attractive OXC schemes as crosstalk level is independent of the number of wavelength channel per fibre. For the worst case the coherent crosstalk is the dominant crosstalk, which is about 20–30 dB higher than the incoherent crosstalk, depending on the switching state of the cascaded 2 2 OXCs. However, in practical applications incoherent crosstalk is usually dominant, since it is highly unlikely that all the same wavelength-channels will originate from the same optical source. And the crosstalk of FBGs is the dominant crosstalk. Copyright # 2001 John Wiley & Sons, Ltd.
منابع مشابه
Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings.
We demonstrate an integrated tunable optical delay line in grating-assisted contradirectional couplers using a CMOS-compatible photonic technology. The input signal is delayed through dispersive Bragg gratings and distributedly coupled to the drop port of the coupler without backreflections. This add-drop design enables monolithic integration of grating-based delay lines without using optical c...
متن کاملDesigning voltage tunable single and multi-channel optical filter with 1DDPC nano-structure
An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...
متن کاملOptically switched erbium fibre laser using a tunable fibre-Bragg grating
The ability to tune the Bragg wavelength of a fibre-Bragg grating (FBG) in an all-fibre laser can offer added functionality such as laser wavelength tunability, polarization selectivity, and Q-switching. Compared to current techniques which rely on mechanically straining the FBG to achieve Bragg-wavelength tunability, an all-optical technique for tuning an FBG offers potentially faster switchin...
متن کاملDesigning voltage tunable single and multi-channel optical filter with 1DDPC nano-structure
An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Communication Systems
دوره 15 شماره
صفحات -
تاریخ انتشار 2002