Scaling of Geometric Quantum Discord Close to a Topological Phase Transition

نویسندگان

  • Chuan-Jia Shan
  • Wei-Wen Cheng
  • Ji-Bing Liu
  • Yong-Shan Cheng
  • Tang-Kun Liu
چکیده

Quantum phase transition is one of the most interesting aspects in quantum many-body systems. Recently, geometric quantum discord has been introduced to signature the critical behavior of various quantum systems. However, it is well-known that topological quantum phase transition can not be described by the conventional Landau's symmetry breaking theory, and thus it is unknown that whether previous study can be applicable in this case. Here, we study the topological quantum phase transition in Kitaev's 1D p-wave spinless quantum wire model in terms of its ground state geometric quantum discord. The derivative of geometric quantum discord is nonanalytic at the critical point, in both zero temperature and finite temperature cases. The scaling behavior and the universality are verified numerically. Therefore, our results clearly show that all the key ingredients of the topological phase transition can be captured by the nearest neighbor and long-range geometric quantum discord.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of entangled quantum optical system in independent media

We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...

متن کامل

Finite-temperature scaling of trace distance discord near criticality in spin diamond structure

In this work we explore the quantum correlation quantified by trace distance discord as a measure to analyze the quantum critical behaviors in the Ising-XXZ diamond structure at finite temperatures. It is found that the first-order derivative of the trace distance discord exhibits a maximum around the critical point at finite temperatures. By analyzing the finite-temperature scaling behavior, w...

متن کامل

Measuring bipartite quantum correlations of an unknown state.

We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements requ...

متن کامل

Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization.

Topological order in two-dimensional (2D) quantum matter can be determined by the topological contribution to the entanglement Rényi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here, we show how topological phase transitions in 2D systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entan...

متن کامل

Topological quantum phase transition and the Berry phase near the Fermi surface in hole-doped quantum wells

Abstract. We propose a topological quantum phase transition for quantum states with different Berry phases in hole-doped III-V semiconductor quantum wells with bulk and structure inversion asymmetry. The Berry phase of the occupied Bloch states can be characteristic of topological metallic states. It is found that the adjustment of thickness of the quantum well may cause a transition of Berry p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014