Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces.
نویسندگان
چکیده
Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals) and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM). According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA) from simulated body fluid (SBF) was examined by a kinetic study using two methods: (1) a simple soaking process in SBF and (2) a laser-liquid-solid interaction (LLSI) process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect of a few stimuli, i.e., the modified solid surface, the laser beam and the aqueous solution.
منابع مشابه
Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique
Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...
متن کاملChimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion.
Extracellular matrix proteins play key roles in controlling the activities of osteoblasts and osteoclasts in bone remodeling. These bone-specific extracellular matrix proteins contain amino acid sequences that mediate cell adhesion, and many of the bone-specific matrix proteins also contain acidic domains that interact with the mineral surface and may orient the signaling domains. Here we repor...
متن کاملInorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage.
Physiologic levels of extracellular PPi, which suppresses hydroxyapatite crystal growth, must be maintained by articular chondrocytes and resident cells in many othee tissues in order to prevent pathologic calcification. However, extracellular PPi rises in articular cartilage in direct association with aging. Matrix supersaturation with PPi stimulates chondrocalcinosis manifesting as calcium py...
متن کاملEvolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals.
The biogenesis of inorganic/organic composite materials such as bone typically involves the process of templated mineralization. Biomimetic synthesis of bone-like materials therefore requires the development of organic scaffolds that mediate mineralization of hydroxyapatite (HAP), the major inorganic component of bone. Using phage display, we identified a 12-residue peptide that bound to single...
متن کاملDecreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals
BACKGROUND Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 9 شماره
صفحات -
تاریخ انتشار 2005