Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6.
نویسندگان
چکیده
Cytochrome P450 2D6 (CYP2D6) metabolizes a wide range of therapeutic drugs. CYP2D6 substrates typically contain a basic nitrogen atom, and the active-site residue Asp-301 has been implicated in substrate recognition through electrostatic interactions. Our recent computational models point to a predominantly structural role for Asp-301 in loop positioning (Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St.-Gallay, S., and Sutcliffe, M. J. (2002) Proteins 49, 216-231) and suggest a second acidic residue, Glu-216, as a key determinant in the binding of basic substrates. We have evaluated the role of Glu-216 in substrate recognition, along with Asp-301, by site-directed mutagenesis. Reversal of the Glu-216 charge to Lys or substitution with neutral residues (Gln, Phe, or Leu) greatly decreased the affinity (K(m) values increased 10-100-fold) for the classical basic nitrogen-containing substrates bufuralol and dextromethorphan. Altered binding was also manifested in significant differences in regiospecificity with respect to dextromethorphan, producing enzymes with no preference for N-demethylation versus O-demethylation (E216K and E216F). Neutralization of Asp-301 to Gln and Asn had similarly profound effects on substrate binding and regioselectivity. Intriguingly, removal of the negative charge from either 216 or 301 produced enzymes (E216A, E216K, and D301Q) with elevated levels (50-75-fold) of catalytic activity toward diclofenac, a carboxylate-containing CYP2C9 substrate that lacks a basic nitrogen atom. Activity was increased still further (>1000-fold) upon neutralization of both residues (E216Q/D301Q). The kinetic parameters for diclofenac (K(m) 108 microm, k(cat) 5 min(-1)) along with nifedipine (K(m) 28 microm, k(cat) 2 min(-1)) and tolbutamide (K(m) 315 microm, k(cat) 1 min(-1)), which are not normally substrates for CYP2D6, were within an order of magnitude of those observed with CYP3A4 or CYP2C9. Neutralizing both Glu-216 and Asp-301 thus effectively alters substrate recognition illustrating the central role of the negative charges provided by both residues in defining the specificity of CYP2D6 toward substrates containing a basic nitrogen.
منابع مشابه
Residues Glutamate 216 and Aspartate 301 Are Key Determinants of Substrate Specificity and Product Regioselectivity in Cytochrome
From the ‡Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom the ¶Departments of Biochemistry and Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom, and the Biological NMR Centre and Department of Biochemistry, University of Leicester, PO Box 138, University Road, Leicester LE1 9HN, United ...
متن کاملWhy is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding.
We have previously shown that Phe(120), Glu(216), and Asp(301) in the active site of cytochrome P450 2D6 (CYP2D6) play a key role in substrate recognition by this important drug-metabolizing enzyme (Paine, M. J., McLaughlin, L. A., Flanagan, J. U., Kemp, C. A., Sutcliffe, M. J., Roberts, G. C., and Wolf, C. R. (2003) J. Biol. Chem. 278, 4021-4027 and Flanagan, J. U., Maréchal, J.-D., Ward, R., ...
متن کاملP-192: Association of Cytochrome P450 2D6 (CYP2D6) Gene Polymorphism with Clomiphene Citrate Treatment in Iranian Infertile Women with Polycystic Ovary Syndrome
Background: Clomiphene Citrate (CC) is the most frequently administered drug for the treatment of female infertility [e.g. polycystic ovary syndrome (PCOS)]; which aims at restoring ovulation. Clomiphene is metabolized by CYP2D6, an important enzyme responsible for the metabolism of approximately 25% of clinically used drugs. CYP2D6 is very polymorphic and thought to result in inter- individual...
متن کاملA Model of Specificity and Selectivity of Mammalian Cytochrome P450 Monooxy-genases
Multiple molecular dynamics simulations and a systematic analysis of sequence and structure of mammalian cytochrome P450 monooxygenases were performed to investigate the structural basis of their specificity and selectivity. While the substrate binding cavity is mobile, the protein core and the access funnel to the heme are rigid. High mobility of the substrate binding pocket is consistent with...
متن کاملUnderstanding a Substrate’s Product Regioselectivity in a Family of Enzymes: A Case Study of Acetaminophen Binding in Cytochrome P450s
Product regioselectivity as influenced by molecular recognition is a key aspect of enzyme catalysis. We applied large-scale two-dimensional (2D) umbrella sampling (USP) simulations to characterize acetaminophen (APAP) binding in the active sites of the family of Cytochrome P450 (CYP) enzymes as a case study to show the different regioselectivity exhibited by a single substrate in comparative en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2003