Exponentially many nonisomorphic orientable triangular embeddings of K12s+3

نویسنده

  • Vladimir P. Korzhik
چکیده

It was proved earlier that there are constants M, c > 0 such that for every n M (resp., every n M , n / ≡ 0, 3mod 12) there are at least c2n/6 nonisomorphic nonorientable (resp., orientable) genus embeddings ofKn. In the present paper we show that for s 6 there are at least 2s−6 nonisomorphic OT-embeddings of K12s . As a byproduct, we give a relatively simple method of constructing index four current graphs with current group Z12s generating orientable triangular embeddings of K12s . © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangular embeddings of complete graphs

In this paper we describe the generation of all nonorientable triangular embeddings of the complete graphs K12 and K13. (The 59 nonisomorphic orientable triangular embeddings of K12 were found in 1996 by Altshuler, Bokowski and Schuchert, and K13 has no orientable triangular embeddings.) There are 182, 200 nonisomorphic nonorientable triangular embeddings for K12, and 243, 088, 286 for K13. Tri...

متن کامل

Exponentially many nonisomorphic genus embeddings of Kn, m

We prove that for every n,m ≥ 6, the complete bipartite graph Kn,m has at least 1 8nm2 b(n−1)/3cb(m−2)/4c nonisomorphic orientable as well as nonorientable genus embeddings. © 2010 Elsevier B.V. All rights reserved.

متن کامل

A lower bound for the number of orientable triangular embeddings of some complete graphs

We prove that, for a certain positive constant a and for an infinite set of values of n, the number of nonisomorphic face 2-colourable triangular embeddings of the complete graph Kn in an orientable surface is at least nan 2 . AMS classification: 05B07, 05C10.

متن کامل

Triangulations of orientable surfaces by complete tripartite graphs

Orientable triangular embeddings of the complete tripartite graph Kn,n,n correspond to biembeddings of Latin squares. We show that if n is prime there are at least e ln n−n(1+o(1)) nonisomorphic biembeddings of cyclic Latin squares of order n. If n = kp, where p is a large prime number, then the number of nonisomorphic biembeddings of cyclic Latin squares of order n is at least e ln p−p(1+ln . ...

متن کامل

Doubly Even Orientable Closed 2-cell Embeddings of the Complete Graph

For all m > 1 and k > 2, we construct closed 2-cell embeddings of the complete graph K8km+4k+1 with faces of size 4k in orientable surfaces. Moreover, we show that when k > 3 there are at least (2m − 1)!/2(2m + 1) = 22mlog2m−O(m) nonisomorphic embeddings of this type. We also show that when k = 2 there are at least 1 4π 1 2m− 5 4 ( 4m e2 ) √ m (1− o(1)) nonisomorphic embeddings of this type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2008