COSMOS: A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

نویسندگان

  • Peter Anninos
  • Stephen D. Murray
چکیده

We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos. Subject headings: diffusion — hydrodynamics — instabilities — methods: numerical — shock waves

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

We describe a new hybrid N -body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equati...

متن کامل

A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids

We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cel...

متن کامل

ar X iv : a st ro - p h / 05 09 25 4 v 1 9 S ep 2 00 5 Cosmos + + : Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

A new code and methodology are introduced for solving the general relativistic magnetohydrodynamic (GRMHD) equations in fixed background spacetimes using time-explicit, finitevolume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artifici...

متن کامل

ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions: I. The Hydrodynamic Algorithms and Tests

In this, the rst of a series of three papers, we begin a detailed description of ZEUS-2D, a numerical code for the simulation of uid dynamical ows in astrophysics including a self-consistent treatment of the e ects of magnetic elds and radiation transfer. The algorithms in ZEUS-2D divide naturally into three areas: 1) hydrodynamics (HD), 2) magnetohydrodynamics (MHD), and 3) radiation hydrodyna...

متن کامل

Equations and Algorithms for Astrophysical Radiation Hydrodynamics in All Non-relativistic Regimes

We analyze the equations of radiation hydrodynamics under the approximations of flux-limited diffusion and a thermal radiation field, and derive the minimal set of evolution equations that includes all terms that are of leading order in any regime of non-relativistic radiation hydrodynamics. Our equations are accurate to first order in v/c in the static diffusion regime. We give the equations i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003