Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs
نویسندگان
چکیده
Strong coupling between discrete phonon and continuous electron-hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. Here we reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. This behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. Our findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.
منابع مشابه
Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.
A grating-based Fabry-Perot (FP) cavity-coupled microring resonator on a silicon chip is reported to demonstrate an all-optically tunable Fano resonance. In the device, an add-drop microring resonator (MRR) is employed, and one of the two bus waveguides is replaced by an FP cavity consisting of two sidewall Bragg gratings. By choosing the parameters of the gratings, the resonant mode of the FP ...
متن کاملA tunable phonon-exciton Fano system in bilayer graphene.
Fano resonances are features in absorption, scattering or transport spectra resulting from the interaction of discrete and continuum states. They have been observed in a variety of systems. Here, we report a many-body Fano resonance in bilayer graphene that is continuously tunable by means of electrical gating. Discrete phonons and continuous exciton (electron-hole pair) transitions are coupled...
متن کاملNew type of Weyl semimetal with quadratic double Weyl fermions.
Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real mater...
متن کاملDiscovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2
The recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising plat...
متن کاملObservation of Weyl nodes and Fermi arcs in tantalum phosphide
A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by ...
متن کامل