Nonlinear propagation of an asymmetric double exponential
نویسنده
چکیده
A weak-shock solution is obtained for the nonlinear propagation of a waveform that initially has the form of an asymmetric double exponential. Such a wave shocks at its peak, so that shock growth and wave-amplitude attenuation occur simultaneously. Simple formulas for wave amplitude, shock amplitude, and arrival time are given as is an expression for the waveform. We also present a general technique for obtaining weak-shock solutions for the amplitude of any integrable waveform that forms a single shock.
منابع مشابه
Solution of Troesche's problem by double exponential Sinc collocation method
In this investigation, the Sinc collocation method based on double exponential transformation is developed to solve the Troesche's problem. Properties of this method are utilized to reduce the system of strongly nonlinear two point boundary value problem to same nonlinear algebraic equations. Combining double exponential transformation through Sinc collocation method causes the remarkable resul...
متن کاملSolution of Troesch's problem through double exponential Sinc-Galerkin method
Sinc-Galerkin method based upon double exponential transformation for solving Troesch's problem was given in this study. Properties of the Sinc-Galerkin approach were utilized to reduce the solution of nonlinear two-point boundary value problem to same nonlinear algebraic equations, also, the matrix form of the nonlinear algebraic equations was obtained.The error bound of the method was found. ...
متن کاملSymmetry breaking and manipulation of nonlinear optical modes in an asymmetric double-channel waveguide
We study light-beam propagation in a nonlinear coupler with an asymmetric double-channel waveguide and derive various analytical forms of optical modes. The results show that the symmetry-preserving modes in a symmetric double-channel waveguide are deformed due to the asymmetry of the two-channel waveguide, yet such a coupler supports the symmetry-breaking modes. The dispersion relations reveal...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملAn Analytic Study on the Dispersion of Love Wave Propagation in Double Layers Lying Over Inhomogeneous Half-Space
In this work, attempts are made to study the dispersion of Love waves in dry sandy layer sandwiched between fiber reinforced layer and inhomogeneous half space.Inhomogeneity in half space associated with density and rigidity and considered in exponential form. Displacement components for fiber reinforced layer, dry sandy layer and inhomogeneous half-space have been obtained by using method of s...
متن کامل