A Major-Index Preserving Map on Fillings
نویسندگان
چکیده
We generalize a map by S. Mason regarding two combinatorial models for key polynomials, in a way that accounts for the major index. Furthermore we define a similar variant of this map, that regards alternative models for the modified Macdonald polynomials at t = 0, and thus partially answers a question by J. Haglund. These maps together imply a certain uniqueness property regarding inversion– and coinversion-free fillings. These uniqueness properties allow us to generalize the notion of charge to a non-symmetric setting, thus answering a question by A. Lascoux and the analogous question in the symmetric setting proves a conjecture by K. Nelson.
منابع مشابه
On strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملComment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’
We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...
متن کاملMajor index for 01-fillings of moon polyominoes
We propose a major index statistic on 01-fillings of moon polyominoes which, when specialized to certain shapes, reduces to the major index for permutations and set partitions. We consider the set F(M, s;A) of all 01-fillings of a moon polyomino M with given column sum s whose empty rows are A, and prove that this major index has the same distribution as the number of north-east chains, which a...
متن کاملA Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm
We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017