Global Clustering Coefficient in Scale-Free Weighted and Unweighted Networks
نویسنده
چکیده
In this paper, we present a detailed analysis of the global clustering coefficient in scale-free graphs. Many observed real-world networks of diverse nature have a power-law degree distribution. Moreover, the observed degree distribution usually has an infinite variance. Therefore, we are especially interested in such degree distributions. In addition, we analyze the clustering coefficient for both weighted and unweighted graphs. There are two well-known definitions of the clustering coefficient of a graph: the global and the average local clustering coefficients. There are several models proposed in the literature for which the average local clustering coefficient tends to a positive constant as a graph grows. On the other hand, there are no models of scale-free networks with an infinite variance of the degree distribution and with an asymptotically constant global clustering coefficient. Models with constant global clustering and finite variance were also proposed. Therefore, in this paper we focus only on the most interesting case: we analyze the global clustering coefficient for graphs with an infinite variance of the degree distribution. For unweighted graphs, we prove that the global clustering coefficient tends to zero with high probability and we also estimate the largest possible clustering coefficient for such graphs. On the contrary, for weighted graphs, the constant global clustering coefficient can be obtained even for the case of an infinite variance of the degree distribution.
منابع مشابه
A general framework for weighted gene co-expression network analysis.
Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An...
متن کاملClustering in weighted networks
In recent years, researchers have investigated a growing number of weighted networks where ties are differentiated according to their strength or capacity. Yet, most network measures do not take weights into consideration, and thus do not fully capture the richness of the information contained in the data. In this paper, we focus on a measure originally defined for unweighted networks: the glob...
متن کاملEnsemble approach to the analysis of weighted networks.
We present an approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks, such as the average degree of the nearest neighbors, the clustering coefficient, the "betweenness," the distance between two nodes, and the diameter of a network. All these measures are well established for unweighted networks but have...
متن کاملClustering Coefficients for Weighted Networks
The clustering coefficient has been used successfully to summarise important features of unweighted, undirected networks across a wide range of applications. Recently, a number of authors have extended this concept to the case of networks with non-negatively weighted edges. After reviewing various alternatives, we focus on a definition due to Zhang and Horvath that can be traced back to earlier...
متن کاملIntensity and coherence of motifs in weighted complex networks.
The local structure of unweighted networks can be characterized by the number of times a subgraph appears in the network. The clustering coefficient, reflecting the local configuration of triangles, can be seen as a special case of this approach. In this paper we generalize this method for weighted networks. We introduce subgraph "intensity" as the geometric mean of its link weights "coherence"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Internet Mathematics
دوره 12 شماره
صفحات -
تاریخ انتشار 2016