Evaluation of N-acetylcysteine and methylprednisolone as therapies for oxygen and acrolein-induced lung damage.

نویسندگان

  • J A Critchley
  • J M Beeley
  • R J Clark
  • M Summerfield
  • S Bell
  • M S Spurlock
  • J A Edginton
  • J D Buchanan
چکیده

Reactive oxidizing species are implicated in the etiology of a range of inhalational pulmonary injuries. Consequently, various free radical scavengers have been tested as potential prophylactic agents. The sulfydryl compound, N-acetylcysteine (NAC) is the only such compound clinically available for use in realistic dosages, and it is well established as an effective antidote for the hepatic and renal toxicity of paracetamol. Another approach in pulmonary injury prophylaxis is methylprednisolone therapy. We evaluated NAC and methylprednisolone in two rat models of inhalational injury: 40-hr exposure to greater than 97% oxygen at 1.1 bar and 15-min exposure to acrolein vapor (210 ppm). For oxygen toxicity, NAC (80 mg) or methylprednisolone (10 mg) were given IP every 2 or 6 hr, respectively. For acrolein, single doses of NAC (1 g/kg) and methylprednisolone (30 mg/kg) were given intravenously 15 min before exposure. In sham-exposed control animals, neither treatment favorably effected mortality, lung wet/dry weight ratios, or pulmonary histology. The increases in lung wet/dry weight ratios, seen with both oxygen and acrolein toxicity were reduced with both treatments. However, with oxygen, NAC therapy was associated with considerably increased mortality and histological changes. Furthermore, IP NAC administration resulted in large volumes of ascitic fluid. With acrolein, IV, NAC had no significant effect on mortality or pulmonary histological damage. Methylprednisolone had no beneficial effects on either the mortality or histological damage observed in either toxicity model. We caution against the ad hoc use of NAC in the management of inhalational pulmonary injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and ...

متن کامل

Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-i...

متن کامل

Cigarette smoke induces direct DNA damage in the human B-lymphoid cell line Raji.

Human lymphoid cells (Raji) were exposed to water-soluble compounds from cigarette smoke (CS) generated in a smoking machine. DNA damage, as detected by alkaline single-cell microelectrophoresis (COMET assay), was induced in a time- and concentration-dependent manner in the cells. Most of the rapidly induced DNA damage was attributable to direct-acting compounds since cytochrome P450-related me...

متن کامل

Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats

Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...

متن کامل

Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats

Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce ‎oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced ‎damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral ‎administration and the protective role of NAC on testes of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1990