Effects of Apigenin on Glutamate-induced [Ca](i) Increases in Cultured Rat Hippocampal Neurons.
نویسندگان
چکیده
Flavonoids have been shown to affect calcium signaling in neurons. However, there are no reports on the effect of apigenin on glutamate-induced calcium signaling in neurons. We investigated whether apigenin affects glutamate-induced increase of free intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured rat hippocampal neurons, using fura-2-based digital calcium imaging and microfluorimetry. The hippocampal neurons were used between 10 and 13 days in culture from embryonic day 18 rats. Pretreatment of the cells with apigenin (1 microM to 100 microM) for 5 min inhibited glutamate (100 microM, 1 min) induced [Ca(2+)](i) increase, concentration-dependently. Pretreatment with apigenin (30 microM) for 5 min significantly decreased the [Ca(2+)](i) responses induced by two ionotropic glutamate receptor agonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, 10 microM, 1 min) and N-methyl-D-aspartate (NMDA, 100 microM, 1 min), and significantly inhibited the AMPA-induced peak currents. Treatment with apigenin also significantly inhibited the [Ca(2+)](i) response induced by 50 mM KCl solution, decreased the [Ca(2+)](i) responses induced by the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG, 100 microM, 90 s), and inhibited the caffeine (10 mM, 2 min)-induced [Ca(2+)](i) responses. Furthermore, treatment with apigenin (30 microM) significantly inhibited the amplitude and frequency of 0.1 mM [Mg(2+)](o)-induced [Ca(2+)](i) spikes. These data together suggest that apigenin inhibits glutamate-induced calcium signaling in cultured rat hippocampal neurons.
منابع مشابه
Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity
The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path-CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perfor...
متن کاملInhibitory effects of acorn extract on glutamate-induced calcium signaling in cultured rat hippocampal neurons.
Various effects of acorn extract have been reported including antioxidant activity, cytotoxicity against cancer cells, and the levels of acetylcholine and its related enzyme activities in the dementia mouse models. However, it is unclear whether acorn extract inhibits glutamate-induced calcium signaling in hippocampal neurons. This study was an investigation into the effect of acorn extract on ...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2008