Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.

نویسندگان

  • Ming-Guo Feng
  • L Gabriel Navar
چکیده

Adenosine is an important paracrine agent regulating renal hemodynamics via adenosine A1 and A2 receptors. To determine the interactions between adenosine A1 and A2 receptors and the possible role of adenosine as a modulator of afferent arteriolar autoregulatory responses, videomicroscopic measurements of afferent arteriolar dimensions were performed at different perfusion pressures (from 100 to 125 and 150 mm Hg) using the isolated-blood-perfused rat juxtamedullary nephron preparation. Single afferent arterioles were visualized and superfused with low or high concentrations of adenosine, either alone or with the adenosine A1 receptor antagonist 8-noradamantan-3-yl-1,3-dipropylxanthine (10 micromol/L) or the adenosine A2 receptor antagonist dimethyl-1-propargylxanthine (10 micromol/L). Adenosine (20 micromol/L) decreased afferent arteriolar diameter by -9.0+/-0.9%, and this effect was enhanced by dimethyl-1-propargylxanthine (10 micromol/L) to -16.1+/-1.2%. However, autoregulatory capability was maintained. Adenosine-induced vasoconstriction was prevented by 8-noradamantan-3-yl-1,3-dipropylxanthine (10 micromol/L) with diameter increasing by 9.6+/-1.2%. Adenosine receptor saturation with a high concentration of adenosine (120 micromol/L) or blocking A1 receptors with 8-noradamantan-3-yl-1,3-dipropylxanthine in the presence of adenosine resulted in marked vasodilation and marked impairment of autoregulatory responses to increases in perfusion pressure (-1.5+/-1.1% and -3.5+/-0.9%). However, afferent arteriolar autoregulatory responses to elevations in perfusion pressure were restored after blockade of A2 receptors alone or in combination with A1 receptor blockade. During treatment with dimethyl-1-propargylxanthine in the presence of adenosine receptor saturation (120 micromol/L), afferent arteriolar autoregulatory responses were intact (-16.5+/-1.6% and -26.4+/-2.1%). These results indicate that the interactions between adenosine A1 and A2 receptors exert important modulatory influences on afferent arteriolar tone and autoregulatory capability. Activation of A2 receptors abrogates the counteracting influences of A1 receptors leading to marked vasodilation and decreased afferent arteriolar autoregulatory efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Symposium - Purines, adenosine and nitric oxide in the regulation of kidney function 7P SA14 THE ROLE OF PURINERGIC RECEPTORS ALONG THE RENAL MICROVASCULATURE

Autoregulation of renal blood flow is an established physiological phenomenon, however the signaling mechanisms involved remain elusive. Autoregulatory adjustments in preglomerular resistance involve myogenic and tubuloglomerular feedback influences. While there is general agreement on the participation of these two regulatory pathways, the signaling molecules and effector mechanisms have not b...

متن کامل

Venlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy

Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...

متن کامل

Effect of Adenosine Agonists on the Proliferation and Differentiation of Chick Embryo Fibroblasts in Three Dimensional Reconstituted Tissue Constructs

Previous studies indicate that organ fibroblasts play an important role in wound healing, collagen production, remodeling processes and pathogenesis of progressive heart, lung, renal and hepatic fibrotic diseases. Several studies suggest a possible inhibitory role for adenosine in the regulation of fibroblast proliferation. The effect of adenosine A2 agonists on proliferation and differentiatio...

متن کامل

Venlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy

Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2007