Acid-base transport by the renal proximal tubule.
نویسنده
چکیده
One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part occurs via a gas channel (aquaporin 1) and acidifies the cell. The second process is apical H+ secretion via Na-H exchange and H+ pumping, processes that can be studied using the NH4+ prepulse technique. The third process is the basolateral exit of HCO3- via the electrogenic Na/HCO3 co-transporter, which is the subject of at least 10 mutations that cause severe proximal renal tubule acidosis in humans. The final process is the regulation of overall HCO3- reabsorption by CO2 and HCO3- sensors at the basolateral membrane. Together, these processes ensure that the proximal tubule responds appropriately to acute acid-base disturbances and thereby contributes to the regulation of blood pH.
منابع مشابه
The acid-base regulation by renal proximal tubule
The kidney plays quite an important role in the regulation of acid-base homeostasis. The dysfunction of renal acid-base regulation causes diseases such as developmental disorder, bone malformation, calcification of eye and brain, etc. In the kidney, this regulation is performed, to a considerable part, in the proximal tubule of the nephron. In the luminal side the key player is sodium-proton ex...
متن کاملThe role of renal proximal tubule transport in the regulation of blood pressure
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulat...
متن کاملα-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism.
Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the re...
متن کاملThyroid hormone deficiency alters expression of acid-base transporters in rat kidney.
Hypothyroidism in humans is associated with incomplete distal renal tubular acidosis, presenting as the inability to respond appropriately to an acid challenge by excreting less acid. Here, we induced hypothyroidism in rats with methimazole (HYPO) and in one group substituted with l-thyroxine (EU). After 4 wk, acid-base status was similar in both groups. However, after 24 h acid loading with NH...
متن کاملEffects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport.
The kidney has the highest abundance of cytochrome P-450 of all extrahepatic organs. Within the kidney, the highest concentration of cytochrome P-450 is found in the proximal tubule. Whether 20- or 19(S)-hydroxyeicosatetraenoic acid (HETE), the major P-450 metabolites of arachidonic acid in the proximal tubule, affect transport in this segment has not been previously investigated. We examined t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2006