DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors.
نویسندگان
چکیده
DNA adenine methyltransferase (Dam) plays an important role in physiological processes of Gram-negative bacteria such as mismatch repair and replication. In addition, Dam regulates the expression of virulence genes in various species. The authors cloned the dam gene of Yersinia enterocolitica and showed that Dam is essential for viability. Dam overproduction in Y. enterocolitica resulted in an increased frequency of spontaneous mutation and decreased resistance to 2-aminopurine; however, these effects were only marginal compared to the effect of overproduction of Escherichia coli-derived Dam in Y. enterocolitica, implying different roles or activities of Dam in mismatch repair of the two species. These differences in Dam function are not the cause for the essentiality of Dam in Y. enterocolitica, as Dam of E. coli can complement a dam defect in Y. enterocolitica. Instead, Dam seems to interfere with expression of essential genes. Furthermore, Dam mediates virulence of Y. enterocolitica. Dam overproduction results in increased tissue culture invasion of Y. enterocolitica, while the expression of specifically in vivo-expressed genes is not altered.
منابع مشابه
Kinetic Analysis of Yersinia pestis DNA Adenine Methyltransferase Activity Using a Hemimethylated Molecular Break Light Oligonucleotide
BACKGROUND DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOG...
متن کاملAltered Ca(2+) regulation of Yop secretion in Yersinia enterocolitica after DNA adenine methyltransferase overproduction is mediated by Clp-dependent degradation of LcrG.
DNA methylation by the DNA adenine methyltransferase (Dam) interferes with the coordinated expression of virulence functions in an increasing number of pathogens. While analyzing the effect of Dam on the virulence of the human pathogen Yersinia enterocolitica, we observed type III secretion of Yop effector proteins under nonpermissive conditions. Dam alters the Ca(2+) regulation of Yop secretio...
متن کاملThe Black Sea in crisis.
Background. DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. Methodology...
متن کاملOverproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica.
DNA adenine methyltransferase (Dam) not only regulates basic cellular functions but also interferes with the proper expression of virulence factors in various pathogens. We showed previously that for the human pathogen Yersinia enterocolitica, overproduction of Dam results in increased invasion of epithelial cells. Since invasion and motility are coordinately regulated in Y. enterocolitica, we ...
متن کاملEpigenetic gene regulation in the bacterial world.
Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 151 Pt 7 شماره
صفحات -
تاریخ انتشار 2005