Optimization of Lipase-Catalyzed Transesterification of Cotton Seed Oil for Biodiesel Production Using Response Surface Methodology

نویسندگان

  • Ying Xia Li
  • Bing Xue Dong
چکیده

The aim of this work was to study the biodiesel production from cotton seed oil by lipase produced by Pichia guilliermondii lipase, which was immobilized onto hydrophobic magnetic particles (HMPs). The optimum reaction conditions were determined for lipase dosage, methanol-to-oil molar ratio, temperature and water content. Using response surface methodology, a quadratic polynomial equation was obtained for fatty acid methyl esters (FAMEs) content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. The optimal conditions for the enzymatic transesterification were temperature of 38.76 , 31.3% immobilized lipase, 10.4% water content, and a methanol-to-oil molar ratio of 4.715:1. The gas chromatographymass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9octadecadienoic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor.

Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of curr...

متن کامل

Optimization of Biodiesel Production Using Immobilized Candida Rugosa Lipase on Magnetic Fe3O4-Silica Aerogel

Hydrophobic magnetic silica aerogel was used as a support to immobilize Candida rugosa lipase by adsorption method. Physical and chemical properties of the support and immobilized lipase were determined by Field Emission Scanning Electron Microscope (FESEM), Brunauer–Emmett–Teller (BET) analysis and Fourier Transform InfraRed (FT-IR) spectroscopy and the results showed that the lipase was s...

متن کامل

Response Surface Methodology: An Emphatic Tool for Optimized Biodiesel Production Using Rice Bran and Sunflower Oils

The current study describes the emphatic use of response surface methodology for the optimized biodiesel production using chemical and enzymatic transesterification of rice bran and sunflower oils. Optimal biodiesel yields were determined to be 65.3 ± 2.0%, 73.4 ± 3.5%, 96.5 ± 1.6%, 89.3 ± 2.0% and 41.7 ± 3.9% for rice bran oil and 65.6 ± 1.2%, 82.1 ± 1.7%, 92.5 ± 2.8%, 72.6 ± 1.6% and 50.4 ± 2...

متن کامل

Lipase Catalyzed Incorporation of Conjugated Linoleic Acid by Transesterification into Sunflower Oil Applying Immobilized Lipase (Lipozyme Thermomyces lanuginosus and Rhizomucor mehei)

Conjugated Linoleic Acid (CLA), Glycerol (G) and sunflower oil blends with varying concentration were subjected to enzymatic esterification using a 1, 3- specific immobilized lipase. CLA was used as acyl due to its purported health benefits. The transesterified lipids were evaluated for free fatty acids (FFA) and composition of fatty acids by gas chromatography. Lipozyme RM IM is preferred for ...

متن کامل

Optimization of Biodiesel Production from Castor Oil Using a Microwave Via Response Surface Methodology (RSM)

The purpose of this research work was to investigate the optimum operating conditions for biodiesel production from castor oil using a microwave. The Box–Behnken design of experiment was carried out using the Design Expert 7. A response surface methodology (RSM) was used to analyze the influence of the process variables (molar ratio of methanol to castor oil, catalyst concentration, reaction ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016