Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics.
نویسندگان
چکیده
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
منابع مشابه
A simulation model for amphiphilic molecules in a mesoscale solvent
We present a stochastic rotation dynamics model of amphiphilic molecules. Vesicle formation of amphiphilic molecules in a thermal fluctuating fluid is demonstrated in this paper. In the model, the interaction of amphiphilic molecules is represented by Lennard–Jones potentials, and stochastic rotation dynamics [T. Ihle, D.M. Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic mo...
متن کاملLow Mach Number Fluctuating Hydrodynamics for Electrolytes
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mi...
متن کاملModeling multiphase flow using fluctuating hydrodynamics.
Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of s...
متن کاملDynamic correlators of Fermi-Pasta-Ulam chains and nonlinear fluctuating hydrodynamics.
We study the equilibrium time correlations for the conserved fields of classical anharmonic chains and argue that their dynamic correlator can be predicted on the basis of nonlinear fluctuating hydrodynamics. In fact, our scheme is more general and would also cover other one-dimensional Hamiltonian systems, for example, classical and quantum fluids. Fluctuating hydrodynamics is a nonlinear syst...
متن کاملFluctuating hydrodynamic modeling of fluids at the nanoscale.
A good representation of mesoscopic fluids is required to combine with molecular simulations at larger length and time scales [De Fabritiis, Phys. Rev. Lett. 97, 134501 (2006)]. However, accurate computational models of the hydrodynamics of nanoscale molecular assemblies are lacking, at least in part because of the stochastic character of the underlying fluctuating hydrodynamic equations. Here ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 17 شماره
صفحات -
تاریخ انتشار 2014