Combinatorial Sublinear-Time Fourier Algorithms

نویسنده

  • Mark A. Iwen
چکیده

We study the problem of estimating the best k term Fourier representation for a given frequency-sparse signal (i.e., vector) A of length N k. More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of Â, and estimate their coefficients, in polynomial(k, log N) time. Randomized sublinear time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem [23, 24]. In this paper we develop the first known deterministic sublinear time sparse Fourier Transform algorithm. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method [24]. Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in [29].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Noisy Characters, Multiplication Codes, and Cryptographic Hardcore Predicates

We present results in cryptography, coding theory and sublinear algorithms. In cryptography, we introduce a unifying framework for proving that a Boolean predicate is hardcore for a one-way function and apply it to a broad family of functions and predicates, showing new hardcore predicates for well known one-way function candidates such as RSA and discrete-log as well as reproving old results i...

متن کامل

Finding Frequent Patterns in a String in Sublinear Time

We consider the problem of testing whether (a large part of) a given string X of length n over some finite alphabet is covered by multiple occurrences of some (unspecified) pattern Y of arbitrary length in the combinatorial property testing model. Our algorithms randomly query a sublinear number of positions of X, and run in sublinear time in n. We first focus on finding patterns of a given len...

متن کامل

Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms

In this paper modified variants of the sparse Fourier transform algorithms from [32] are presented which improve on the approximation error bounds of the original algorithms. In addition, simple methods for extending the improved sparse Fourier transforms to higher dimensional settings are developed. As a consequence, approximate Fourier transforms are obtained which will identify a near-optima...

متن کامل

ar X iv : m at h / 05 02 35 7 v 1 [ m at h . N A ] 1 6 Fe b 20 05 A Sublinear Algorithm of Sparse Fourier Transform for Nonequispaced Data ∗

We present a sublinear randomized algorithm to compute a sparse Fourier transform for nonequispaced data. Suppose a signal S is known to consist of N equispaced samples, of which only L < N are available. If the ratio p = L/N is not close to 1, the available data are typically non-equispaced samples. Then our algorithm reconstructs a near-optimal B-term representation R with high probability 1−...

متن کامل

The sparse fourier transform : theory & practice

The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010