Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase.
نویسندگان
چکیده
Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair.
منابع مشابه
Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines.
To gain a better understanding of the mechanism of action of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd), gene expression profiling analyses were conducted on plateau phase human lung cancer (A549) cell cultures treated with MGd. Drug treatment elicited a highly specific response that manifested in elevated levels of metallothionein isoform and zinc transporter ...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملReaction Mechanism of Ribonucleoside Diphosphate Reductase from Escherichia coli
Ribonucleoside diphosphate reductase consists of two nonidentical subunits, proteins Bl and B2. The enzyme catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides. The electrons required in this reduction are transported from NADPH via a flavoprotein, thioredoxin reductase, to a low molecular weight protein, thioredoxin. The reduced form of thioredoxin acts as hydro...
متن کاملMotexafin Gadolinium-Induced Cell Death Correlates with HO1 Expression and Inhibition of P450 Reductase-Dependent Activities
متن کامل
Reaction mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Oxidation-reduction-active disulfides in the B1 subunit.
Ribonucleoside diphosphate reductase consists of two nonidentical subunits, proteins Bl and B2. The enzyme catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides. The electrons required in this reduction are transported from NADPH via a flavoprotein, thioredoxin reductase, to a low molecular weight protein, thioredoxin. The reduced form of thioredoxin acts as hydro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 16 شماره
صفحات -
تاریخ انتشار 2006