When trees grow too long: investigating the causes of highly inaccurate bayesian branch-length estimates.
نویسندگان
چکیده
A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by such branch lengths are unreasonable for studies using biological data and are known to be false for studies using simulated data. We conducted additional Bayesian analyses and studied approximate-posterior surfaces to investigate the causes underlying these large errors. We manipulated the starting parameter values of the Markov chain Monte Carlo (MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability distribution on branch lengths. We demonstrate that inaccurate branch-length estimates result from either 1) poor mixing of MCMC chains or 2) posterior distributions with excessive weight at long tree lengths. Both effects are caused by a rapid increase in the volume of branch-length space as branches become longer. In the former case, both an MCMC move that scales all branch lengths in the tree simultaneously and the use of overdispersed starting branch lengths allow the chain to accurately sample the posterior distribution and should be used in Bayesian analyses of phylogeny. In the latter case, branch-length priors can have strong effects on resulting inferences and should be carefully chosen to reflect biological expectations. We provide a formula to calculate an exponential rate parameter for the branch-length prior that should eliminate inference of biased branch lengths in many cases. In any phylogenetic analysis, the biological plausibility of branch-length output must be carefully considered.
منابع مشابه
Robustness of compound Dirichlet priors for Bayesian inference of branch lengths.
We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335.) as a solution to the problem of branch-length overestimation in Bayesian phylogenetic inference. The co...
متن کاملEffects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values...
متن کاملBranch-length prior influences Bayesian posterior probability of phylogeny.
The Bayesian method for estimating species phylogenies from molecular sequence data provides an attractive alternative to maximum likelihood with nonparametric bootstrap due to the easy interpretation of posterior probabilities for trees and to availability of efficient computational algorithms. However, for many data sets it produces extremely high posterior probabilities, sometimes for appare...
متن کاملTechniques for Assessing Phylogenetic Branch Support: A Performance Study
The inference of evolutionary relationships is usually aided by a reconstruction method which is expected to produce a reasonably accurate estimation of the true evolutionary history. However, various factors are known to impede the reconstruction process and result in inaccurate estimates of the true evolutionary relationships. Detecting and removing errors (wrong branches) from tree estimates...
متن کاملA Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies
Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2010