Developing an expert system based on association rules and predicate logic for earthquake prediction
نویسندگان
چکیده
Expert systems (ES) are a branch of applied artificial intelligence. The basic idea behind ES is simply that expertise, which is the vast body of task-specific knowledge, is transferred from a human to a computer. ES provide powerful and flexible means for obtaining solutions to a variety of problems that often cannot be dealt with by other, more traditional and orthodox methods. Thus, their use is proliferating to many sectors of our social and technological life, where their applications are proving to be critical in the process of decision support and problem solving. Earthquake professionals for many decades have recognized the benefits to society from reliable earthquake predictions, but uncertainties regarding source initiation, rupture phenomena, and accuracy of both the timing and magnitude of the earthquake occurrence have often times seemed either very difficult or impossible to overcome. This research proposes and implements an expert system to predict earthquakes from previous data. This is achieved by applying association rule mining on earthquake data from 1972 to 2013. These associations are polished using predicate-logic techniques to draw stimulating production-rules to be used with a rule-based expert system. The proposed expert system was able to predict all earthquakes which actually occurred within 12 h at-most. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
A Fuzzy Expert System for Predicting the Performance of Switched Reluctance Motor
In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit (IMEC) method has been used to generate the input-output data. These input-output data i...
متن کاملA fuzzy expert system for earthquake prediction, case study: the Zagros range
A methodology for the development of a fuzzy expert system (FES) with application to earthquake prediction is presented. The idea is to reproduce the performance of a human expert in earthquake prediction. To do this, at the first step, rules provided by the human expert are used to generate a fuzzy rule base. These rules are then fed into an inference engine to produce a fuzzy inference system...
متن کاملDevelopment of a Spatial Model for Locating Optimal Areas of Sustainable Physical Development Using Fuzzy Logic (Case Study: Hamadan City)
Today, physical development and population growth in Iranian cities, like other developing countries, is on the rise. One of the main problems in the urban area is the lack of attention to the influential parameters in the sustainable urban development. Various factors, such as natural phenomena, play a role in the urban development, and the effective parameters must be considered for locatin...
متن کاملPREDICTING URBAN TRIP GENERATION USING A FUZZY EXPERT SYSTEM
One of the most important stages in the urban transportation planning procedure is predicting the rate of trips generated by each trac zone. Currently, multiple linear regression models are frequently used as a prediction tool. This method predicts the number of trips produced from, or attracted to each trac zone according to the values of independent variables for that zone. One of the main li...
متن کاملA Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis
Introduction Bacterial meningitis is a known infectious disease which occurs at early ages and should be promptly diagnosed and treated. Bacterial and aseptic meningitis are hard to be distinguished. Therefore, physicians should be highly informed and experienced in this area. The main aim of this study was to suggest a system for distinguishing between bacterial and aseptic meningitis, using f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 75 شماره
صفحات -
تاریخ انتشار 2015