Edge coloring in unstructured CFD codes

نویسندگان

  • Andrew Giuliani
  • Lilia Krivodonova
چکیده

We propose a way of preventing race conditions in the evaluation of the surface integral contribution in discontinuous Galerkin and finite volume flow solvers by coloring the edges (or faces) of the computational mesh. In this work we use a partitioning algorithm that separates the edges of triangular elements into three groups and the faces of quadrangular and tetrahedral elements into four groups; we then extend this partitioning to adaptively refined, nonconforming meshes. We use the ascribed coloring to reduce code memory requirements and optimize accessing the elemental data in memory. This process reduces memory access latencies and speeds up computations on graphics processing units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel unstructured mesh CFD codes: a role for recursive clustering techniques in mesh decomposition

In principle, unstructured mesh CFD codes can be parallelised using a mesh decomposition approach similar to structured mesh codes. However, for unstructured codes the mesh structure is problem dependent and algorithms for automatically decomposing the mesh onto the processors are required. An algorithm based upon a recursive clustering technique, for decomposing meshes into an arbitrary number...

متن کامل

Development of Fast Unstructured Cfd Code “fastar”

In order to develop a fast CFD code, we investigated well-known unstructured CFD codes, and we have determined the target performance and specification of CFD code. This is then followed by the development of a fast unstructured CFD code “FaSTAR”. The accuracy of drag prediction with FaSTAR is validated by the DPW4 benchmark problem. The computed drag coefficients generally agree with other res...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.07613  شماره 

صفحات  -

تاریخ انتشار 2016