On Complete Convergence for Weighted Sums of -Mixing Random Variables

نویسندگان

  • Wang Xuejun
  • Shen Yan
چکیده

Copyright q 2010 Wang Xuejun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Some results on complete convergence for weighted sums ∑n i 1 aniXi are presented, where {Xn, n ≥ 1} is a sequence of φ-mixing random variables and {ani, n ≥ 1, i ≥ 1} is an array of constants. They generalize the corresponding results for i.i.d sequence to the case of φ-mixing sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Complete Moment Convergence of Weighted Sums for Arrays of Rowwise φ-Mixing Random Variables

The complete moment convergence of weighted sums for arrays of rowwise φ-mixing random variables is investigated. By using moment inequality and truncation method, the sufficient conditions for complete moment convergence of weighted sums for arrays of rowwise φ-mixing random variables are obtained. The results of Ahmed et al. 2002 are complemented. As an application, the complete moment conver...

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

Complete convergence for weighted sums of arrays of rowwise rho-mixing random variables

Let {Xni , i≥ 1,n≥ 1} be an array of rowwise ρ̃-mixing random variables. Some sufficient conditions for complete convergence for weighted sums of arrays of rowwise ρ̃-mixing random variables are presented without assumptions of identical distribution. As applications, the Baum and Katz type result and the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ρ̃-mixing random vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010