Invariant Domains Preserving Ale Approximation of Hyperbolic Systems with Continuous Finite Elements ∗

نویسندگان

  • LAURA SAAVEDRA
  • YONG YANG
  • Y. YANG
چکیده

A conservative invariant domain preserving Arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements and is first-order accurate in space. One originality of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does not depend on any ad hoc parameter. The proposed method is meant to be a stepping stone for the construction of higher-order methods in space by using appropriate limitation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Domains Preserving Arbitrary Lagrangian Eulerian Approximation of Hyperbolic Systems with Continuous Finite Elements

A conservative invariant domain preserving arbitrary Lagrangian Eulerian method for solving nonlinear hyperbolic systems is introduced. The method is explicit in time, works with continuous finite elements, and is first-order accurate in space. One original element of the present work is that the artificial viscosity is unambiguously defined irrespective of the mesh geometry/anisotropy and does...

متن کامل

Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems

We propose a numerical method to solve general hyperbolic systems in any space dimension using forward Euler time stepping and continuous finite elements on non-uniform grids. The properties of the method are based on the introduction of an artificial dissipation that is defined so that any convex invariant sets containing the initial data is an invariant domain for the method. The invariant do...

متن کامل

Power Domains and Iterated Function Systems

We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domain-theoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic I...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016