Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks

نویسندگان

  • Najla S Dar-Odeh
  • Othman M Alsmadi
  • Faris Bakri
  • Zaer Abu-Hammour
  • Asem A Shehabi
  • Mahmoud K Al-Omiri
  • Shatha M K Abu-Hammad
  • Hamzeh Al-Mashni
  • Mohammad B Saeed
  • Wael Muqbil
  • Osama A Abu-Hammad
چکیده

OBJECTIVE To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU) based on a set of appropriate input data. PARTICIPANTS AND METHODS Artificial neural networks (ANN) software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration) were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants. RESULTS THE OPTIMIZED NEURAL NETWORK, WHICH PRODUCED THE MOST ACCURATE PREDICTIONS FOR THE PRESENCE OR ABSENCE OF RECURRENT APHTHOUS ULCERATION WAS FOUND TO EMPLOY: gender, hematological (with or without ferritin) and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits. CONCLUSIONS FACTORS APPEARING TO BE RELATED TO RECURRENT APHTHOUS ULCERATION AND APPROPRIATE FOR USE AS INPUT DATA TO CONSTRUCT ANNS THAT PREDICT RECURRENT APHTHOUS ULCERATION WERE FOUND TO INCLUDE THE FOLLOWING: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent Aphthous Stomatitis

Recurrent aphthous stomatitis (RAS) is a common disorder affecting 5% to 66% of examined adult patient groups. There may be a female predominance in some adult and child patient groups.1–4 The ulceration usually commences in the second decade,5 although 40% of selected groups of children can have a history of RAS, ulceration beginning before 5 years of age, the frequency of affected patients ri...

متن کامل

Provide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks

Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010