The counterbend phenomenon in dynein-disabled rat sperm flagella and what it reveals about the interdoublet elasticity.

نویسندگان

  • Charles B Lindemann
  • Lisa J Macauley
  • Kathleen A Lesich
چکیده

Rat sperm that have been rendered passive by disabling the dynein motors with 50 muM sodium metavanadate and 0.1 mM ATP exhibit an interesting response to imposed bending. When the proximal flagellum is bent with a microprobe, the portion of the flagellum distal to the probe contact point develops a bend in the direction opposite the imposed bend. This "counterbend" is not compatible with a simple elastic beam. It can be satisfactorily explained by the sliding tubule model of flagellar structure but only if there are permanent elastic connections between the outer doublets of the axoneme. The elastic component that contributes the bending torque for the counterbend does not reset to a new equilibrium position after an imposed bend but returns the flagellum to a nearly straight or slightly curved final position after release from the probe. This suggests it is based on fixed, rather than mobile, attachments. It is also disrupted by elastase or trypsin digestion, confirming that it is dependent on a protein linkage. Adopting the assumption that the elasticity is attributed to the nexin links that repeat at 96 nm intervals, we find an apparent elasticity for each link that ranges from 1.6 to 10 x 10(-5) N/m. However, the elasticity is nonlinear and does not follow Hooke's law but appears to decrease with increased stretch. In addition, the responsible elastic elements must be able to stretch to more than 10 times their resting length without breakage to account for the observed counterbend formation. Elasticity created by some type of protein unfolding may be the only viable explanation consistent with both the extreme capacity for extension and the nonlinear character of the restoring force that is observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical properties of the passive sea urchin sperm flagellum.

In this study we used Triton X-100 extracted sea urchin spermatozoa to investigate the mechanical behavior of the basic 9+2 axoneme. The dynein motors were disabled by vanadate so that the flagellum is rendered a passive structure. We find that when a proximal portion of the flagellum is bent with a glass microprobe, the remainder of the flagellum distal to the probe exhibits a bend in the oppo...

متن کامل

Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model.

The flagella of mammalian sperm possess certain structural characteristics that distinguish them from simple flagella. Most notable of these features are the sheath (surrounding the axoneme), the outer dense fibers of ODFs (that are attached to the outer doublets), and the connecting piece (which anchors the ODFs at the base of the flagellum). In this study, the significance of these specialize...

متن کامل

Flexural Rigidity and Shear Stiffness of Flagella Estimated from Induced Bends and Counterbends.

Motile cilia and flagella are whiplike cellular organelles that bend actively to propel cells or move fluid in passages such as airways, brain ventricles, and the oviduct. Efficient motile function of cilia and flagella depends on coordinated interactions between active forces from an array of motor proteins and passive mechanical resistance from the complex cytoskeletal structure (the axoneme)...

متن کامل

Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics.

Experimental observations on cyclic splitting and bending by a flagellar doublet pair are modeled using forces obtained from a model for dynein mechanochemistry, based on ideas introduced by Andrew Huxley and Terrill Hill and extended previously for modeling flagellar movements. The new feature is elastic attachment of dynein to the A doublet, which allows movement perpendicular to the A double...

متن کامل

How molecular motors shape the flagellar beat.

Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2005