Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution

نویسندگان

  • Lei Yang
  • Ping Liu
  • Jing Li
  • Bin Xiang
چکیده

Recently, transition metal dichalcogenides (TMDs), represented by MoS2, have been proven to be a fascinating new class of electrocatalysts in hydrogen evolution reaction (HER). The rich chemical activities, combined with several strategies to regulate its morphologies and electronic properties, make MoS2 very attractive for understanding the fundamentals of electrocatalysis. In this review, recent developments in using MoS2 as electrocatalysts for the HER with high activity are presented. The effects of edges on HER activities of MoS2 are briefly discussed. Then we demonstrate strategies to further enhance the catalytic performance of MoS2 by improving its conductivity or engineering its structure. Finally, the key challenges to the industrial application of MoS2 in electrocatalytic hydrogen evolution are also pointed out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots.

The design and development of inexpensive highly efficient electrocatalysts for hydrogen production underpins several emerging clean-energy technologies. In this work, for the first time, molybdenum disulfide (MoS2) nanodots have been synthesized by ionic liquid assisted grinding exfoliation of bulk platelets and isolated by sequential centrifugation. The nanodots have a thickness of up to 7 la...

متن کامل

Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production

Hydrogen production through water splitting has been considered as a green, pure and high-efficient technique. As an important half-reaction involved, hydrogen evolution reaction is a complex electrochemical process involving liquid-solid-gas three-phase interface behaviour. Therefore, new concepts and strategies of material design are needed to smooth each pivotal step. Here we report a multis...

متن کامل

Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyr...

متن کامل

Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technolo...

متن کامل

Functional Oxides Research Letter Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction

Nickel–molybdenum (Ni–Mo) materials are widely used functional oxide catalysts for the hydrogen evolution reaction. In this work, we investigate the high activity of Ni–Mo by depositing size-controlled Ni nanocrystals (NCs) onto Mo substrates. We observe a synergistic increase in catalytic activity that does not scale with the Ni–Mo interface length. This evidence points to a bulk electronic in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017