Characterization and biological role of the O-polysaccharide gene cluster of Yersinia enterocolitica serotype O:9.
نویسندگان
چکیده
Yersinia enterocolitica serotype O:9 is a gram-negative enteropathogen that infects animals and humans. The role of lipopolysaccharide (LPS) in Y. enterocolitica O:9 pathogenesis, however, remains unclear. The O:9 LPS consists of lipid A to which is linked the inner core oligosaccharide, serving as an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential for O:9. The biological functions of O:9 OPS and OC were studied using isogenic mutants lacking one or both of these LPS parts. We showed that OPS and OC confer resistance to human complement and polymyxin B; the OPS effect on polymyxin B resistance could be observed only in the absence of OC.
منابع مشابه
Cloning and characterization of the Yersinia enterocolitica serotype O:9 lipopolysaccharide O-antigen gene cluster.
متن کامل
Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing.
We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominan...
متن کاملImmunological identity of brucella native hapten, polysaccharide B, and yersinia enterocolitica serotype 9 native hapten.
Yersinia enterocolitica serotype 9 contained an antigenic component giving a reaction of total identity with Brucella native hapten and polysaccharide B. This component was present in a phenol-water extract (fraction 5; M. Redfearn, Ph.D. Thesis, University of Wisconsin, Madison, 1960) along with the smooth lipopolysaccharide. The native hapten could be purified free of lipopolysaccharide and p...
متن کاملIdentification of Yersinia enterocolitica at the species and subspecies levels by Fourier transform infrared spectroscopy.
Yersinia enterocolitica and other Yersinia species, such as Y. pseudotuberculosis, Y. bercovieri, and Y. intermedia, were differentiated using Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. A set of well defined Yersinia strains from Switzerland and Germany was used to create a method for FT-IR-based differentiation of Yersinia isolates at the ...
متن کاملYersinia enterocolitica: an unlikely cause of positive brucellosis tests in greater yellowstone ecosystem bison (Bison bison).
Yersinia enterocolitica serotype O:9 has identical O-antigens to those of Brucella abortus and has apparently caused false-positive reactions in numerous brucellosis serologic tests in elk (Cervus canadensis) from southwest Montana. We investigated whether a similar phenomenon was occurring in brucellosis antibody-positive bison (Bison bison) using Y. enterocolitica culturing techniques and mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 189 20 شماره
صفحات -
تاریخ انتشار 2007