Role of the C-terminal domain in inactivation of brain and cardiac sodium channels.
نویسندگان
چکیده
Inactivation is a fundamental characteristic of Na(+) channels, and small changes cause skeletal muscle paralysis and myotonia, epilepsy, and cardiac arrhythmia. Brain Na(v)1.2a channels have faster inactivation than cardiac Na(v)1.5 channels, but minor differences in inactivation gate structure are not responsible. We constructed chimeras in which the C termini beyond the fourth homologous domains of Na(v)1.2a and Na(v)1.5 were exchanged. Replacing the C-terminal domain (CT) of Na(v)1.2a with that of Na(v)1.5 (Na(v)1.2/1.5CT) slowed inactivation at +40 mV approximately 2-fold, making it similar to Na(v)1.5. Conversely, replacing the CT of Na(v)1.5 with that of Na(v)1.2a (Nav1.5/1.2CT) accelerated inactivation, making it similar to Na(v)1.2a. Activation properties were unaffected. The voltage dependence of steady-state inactivation of Na(v)1.5 is 16 mV more negative than that of Na(v)1.2a. The steady-state inactivation curve of Na(v)1.2a was shifted +12 mV in Na(v)1.2/1.5CT, consistent with destabilization of the inactivated state. Conversely, Na(v)1.5/1.2CT was shifted -14 mV relative to Na(v)1.5, consistent with stabilization of the inactivated state. Although these effects of exchanging C termini were consistent with their effects on inactivation kinetics, they magnified the differences in the voltage dependence of inactivation between brain and cardiac channels rather than transferring them. Thus, other parts of these channels determine the basal difference in steady-state inactivation. Deletion of the distal half of either the Na(v)1.2 or Na(v)1.5 CTs accelerated open-state inactivation and negatively shifted steady-state inactivation. Thus, the C terminus has a strong influence on kinetics and voltage dependence of inactivation in brain Na(v)1.2 and cardiac Na(v)1.5 channels and is primarily responsible for their differing rates of channel inactivation.
منابع مشابه
Temperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملAnalyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome.
AIMS Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS SCN5A was screened for mutations in a male patient with type-1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 26 شماره
صفحات -
تاریخ انتشار 2001