Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
نویسندگان
چکیده
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4. Keywords—Alpha waves, antidepressant, treatment outcome, wavelet.
منابع مشابه
Prediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.
Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS. Materials and Methods: the spectral powers of different...
متن کاملAlpha Wavelet Power as a Biomarker of Antidepressant Treatment Response in Bipolar Depression.
There is mounting evidence of a link between the properties of electroencephalograms (EEGs) of depressive patients and the outcome of pharmacotherapy. The goal of this study was to develop an EEG biomarker of antidepressant treatment response which would require only a single EEG measurement. We recorded resting 21-channel EEG in 17 in-patients suffering from bipolar depression in eyes-closed a...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملکاربرد داده های EEG به عنوان شاخص پیش بینی اثربخشی کلوزاپین دردرمان بیماران مبتلا به اسکیزوفرنی مقاوم به درمان
Background and purpose: EEG is used as a diagnostic tool in the diagnosis and prognosis of disease spread. Among the psychiatric illnesses that can utilize EEG to measure response to treatment, schizophrenia can be noted. Many investigations on the application of data EEG as a predictor of treatment response in patients with schizophrenia refractory to clozapine has been done in order to res...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کامل