X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases.

نویسندگان

  • P E Harper
  • D A Mannock
  • R N Lewis
  • R N McElhaney
  • S M Gruner
چکیده

X-ray diffraction is used to solve the low-resolution structures of fully hydrated aqueous dispersions of seven different diacyl phosphatidylethanolamines (PEs) whose hydrocarbon chains have the same effective chain length but whose structures vary widely. Both the lower-temperature, liquid-crystalline lamellar (L(alpha)) and the higher-temperature, inverted hexagonal (H(II)) phase structures are solved, and the resultant internal dimensions (d-spacing, water layer thickness, average lipid length, and headgroup area at the lipid-water interface) of each phase are determined as a function of temperature. The magnitude of the L(alpha) and H(II) phase d-spacings on either side of the L(alpha)/H(II) phase transition temperature (T(h)) depends significantly on the structure of the PE hydrocarbon chains. The L(alpha) phase d-spacings range from 51.2 to 56.4 A, whereas those of the H(II) phase range from 74.9 to 82.7 A. These new results differ from our earlier measurements of these PEs (Lewis et al., Biochemistry, 28:541-548, 1989), which found near constant d-spacings of 52.5 and 77.0-78.0 A for the L(alpha) and H(II) phases, respectively. In both phases, the d-spacings decrease with increasing temperature independent of chain structure, but, in both phases, the rate of decrease in the L(alpha) phase is smaller than that in the H(II) phase. A detailed molecular description of the L(alpha)/H(II) phase transition in these PEs is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial dehydration of phosphatidylethanolamine phosphate groups during hexagonal phase formation, as seen by i.r. spectroscopy.

The gel-to-fluid and lamellar-to-HII-hexagonal thermotropic phase transitions of egg-yolk phosphatidylethanolamine have been examined by Fourier-transform infrared spectroscopy under a variety of conditions, namely excess water at pH 5.0, excess water at pH 9.5 and low hydration. The various lamellar and hexagonal phases have been characterized by X-ray diffraction. At pH 5.0, gel-fluid and lam...

متن کامل

Chain packing in the inverted hexagonal phase of phospholipids: a study by X-ray anomalous diffraction on bromine-labeled chains.

Although lipid phases are routinely studied by X-ray diffraction, construction of their unit cell structures from the diffraction data is difficult except for the lamellar phases. This is due to the well-known phase problem of X-ray diffraction. Here we successfully applied the multiwavelength anomalous dispersion (MAD) method to solve the phase problem for an inverted hexagonal phase of a phos...

متن کامل

Cholesterol favors phase separation of sphingomyelin.

The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-t...

متن کامل

Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.

The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have b...

متن کامل

Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.

By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 2001