Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions
نویسندگان
چکیده
Iterative substructuring methods with Lagrange multipliers for the elliptic system of linear elasticity are considered. The algorithms belong to the family of dual-primal FETI methods which was introduced for linear elasticity problems in the plane by Farhat et al. [2001] and then extended to three dimensional elasticity problems by Farhat et al. [2000]. In dual-primal FETI methods, some continuity constraints on primal displacement variables are required to hold throughout the iterations, as in primal iterative substructuring methods, while most of the constraints are enforced by the use of dual Lagrange multipliers, as in the older one-level FETI algorithms. The primal constraints should be chosen so that the local problems become invertible. They also provide a coarse problem and they should be chosen so that the iterative method converges rapidly. Recently, the family of algorithms for scalar elliptic problems in three dimensions was extended and a theory was provided in Klawonn et al. [2002a,b]. It was shown that the condition number of the dual-primal FETI methods can be bounded polylogarithmically as a function of the dimension of the individual subregion problems and that the bounds can otherwise be made independent of the number of subdomains, the mesh size, and jumps in the coefficients. In the case of the elliptic system of partial differential equations arising from linear elasticity, essential changes in the selection of the primal constraints have to be made in order to obtain the same quality bounds for elasticity problems as in the scalar case. Special emphasis is given to developing robust condition number estimates with bounds which are independent of arbitrarily large jumps of the material coefficients. For benign coefficients, without large jumps, selecting an appropriate set of edge averages as primal constraints are sufficient to obtain good bounds, whereas for arbitrary coefficient distributions, additional primal first order moments are also required.
منابع مشابه
SCHRIFTENREIHE DES FACHBEREICHS MATHEMATIK A Parallel Implementation of Dual-Primal FETI Methods for Three Dimensional Linear Elasticity Using a Transformation of Basis by
Dual-primal FETI methods for linear elasticity problems in three dimensions are considered. These are nonoverlapping domain decomposition methods where some primal continuity constraints across subdomain boundaries are required to hold throughout the iterations, whereas most of the constraints are enforced by Lagrange multipliers. An algorithmic framework for dualprimal FETI methods is describe...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملA FETI-DP Formulation for Compressible Elasticity with Mortar Constraints
A FETI-DP formulation for three dimensional elasticity problems on non-matching grids is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on subdomain interfaces. The mortar matching condition are considered as weak continuity constraints in the FETIDP formulation. A relatively large set of primal constraints, which include average and mome...
متن کاملDual-primal Feti Methods for Linear Elasticity
Dual-Primal FETI methods are nonoverlapping domain decomposition methods where some of the continuity constraints across subdomain boundaries are required to hold throughout the iterations, as in primal iterative substructuring methods, while most of the constraints are enforced by Lagrange multipliers, as in one-level FETI methods. The purpose of this article is to develop strategies for selec...
متن کاملSome Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D
Iterative substructuring methods with Lagrange multipliers for elliptic problems are considered. The algorithms belong to the family of dual-primal FETI methods which were introduced for linear elasticity problems in the plane by Farhat et al. [2001] and were later extended to three dimensional elasticity problems by Farhat et al. [2000]. Recently, the family of algorithms for scalar diffusion ...
متن کامل