A Combinatorial Formula for Orthogonal Idempotents in the 0-Hecke Algebra of SN
نویسندگان
چکیده
Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of the identity into orthogonal idempotents in the 0-Hecke algebra of the symmetric group, CH0(SN ). This construction is compatible with the branching from H0(SN−1) to H0(SN ). Résumé. En s’appuyant sur le travail de P.N. Norton, nous donnons des formules combinatoires pour deux décompositions maximales de l’identité en idempotents orthogonaux dans l’algèbre de Hecke H0(SN ) du groupe symétrique à q = 0. Ces constructions sont compatibles avec le branchement de H0(SN−1) à H0(SN ).
منابع مشابه
A Combinatorial Formula for Orthogonal Idempotents in the 0-Hecke Algebra of the Symmetric Group
Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of the identity into orthogonal idempotents in the 0-Hecke algebra of the symmetric group, CH0(SN ). This construction is compatible with the branching from SN−1 to SN .
متن کامل0 Ju n 19 98 Weights of Markov Traces on Hecke Algebras ∗
We compute the weights, i.e. the values at the minimal idempotents, for the Markov trace on the Hecke algebra of type Bn and type Dn. In order to prove the weight formula, we define representations of the Hecke algebra of type B onto a reduced Hecke Algebra of type A. To compute the weights for type D we use the inclusion of the Hecke algebra of type D into the Hecke algebra of type B. Introduc...
متن کاملOn the Representation Theory of Finite J -trivial Monoids
In 1979, Norton showed that the representation theory of the 0-Hecke algebra admits a rich combinatorial description. Her constructions rely heavily on some triangularity property of the product, but do not use explicitly that the 0-Hecke algebra is a monoid algebra. The thesis of this paper is that considering the general setting of monoids admitting such a triangularity, namely J -trivial mon...
متن کاملOn Schur's Q-functions and the Primitive Idempotents of a Commutative Hecke Algebra*
Let Bn denote the centralizer of a fixed-point free involution in the symmetric group S2n. Each of the four one-dimensional representations of Bn induces a multiplicity-free representation of S2n, and thus the corresponding Hecke algebra is commutative in each case. We prove that in two of the cases, the primitive idempotents can be obtained from the power-sum expansion of Schur's Q-functions, ...
متن کاملIwahori - Hecke algebras of type A at roots of unityFrederick
Let H n be the Iwahori-Hecke algebra of type A n?1. For each Young diagram , an H n module S , called a Specht module, was deened in DJ]. The dimension of S does not depend on the choice of q, and for q not a root of unity, the S 's provide a complete set of irreducible H n-modules, up to isomorphism. If q is a primitive l-th root of unity, a complete set of simple H n-modules (D) has been cons...
متن کامل