Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis.

نویسندگان

  • H Van Remmen
  • M D Williams
  • Z Guo
  • L Estlack
  • H Yang
  • E J Carlson
  • C J Epstein
  • T T Huang
  • A Richardson
چکیده

Heart mitochondria from heterozygous (Sod2(-/+)) knockout mice have a 50% reduction in manganese superoxide dismutase (MnSOD) activity. The decrease in MnSOD activity was associated with increased mitochondrial oxidative damage as demonstrated by a decrease in the activities of iron sulfhydryl proteins sensitive to oxygen stress (aconitase and reduced nicotinamide adenine dinucleotide-oxidoreductase). Mitochondrial function was altered in the Sod2(-/+) mice, as shown by decreased respiration by complex I and an increase in the sensitivity of the permeability transition to induction by calcium and t-butylhydroperoxide. The increased induction of the permeability transition in heart mitochondria from Sod2(-/+.)mice was associated with increased release of cytochrome c and an increase in DNA fragmentation. Cardiomyocytes isolated from neonatal Sod2(-/+) and Sod2(-/-) mice were more sensitive to cell death than cardiomyocytes from Sod2(+/+) mice after t-butylhydroperoxide treatment, and this increased sensitivity was prevented by inhibiting the permeability transition with cyclosporin A. These experiments demonstrate that MnSOD may play an important role in the induction of the mitochondrial pathway of apoptosis in the heart, and this appears to occur primarily through the permeability transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astragalus polysaccharides improve cardiomyopathy in STZ-induced diabetic mice and heterozygous (SOD2+/-) knockout mice

Oxidative stress plays an important role in the development of diabetic cardiomyopathy. In the present study, we determined whether the effect of astragalus polysaccharides (APS) on diabetic cardiomyopathy was associated with its impact on oxidative stress. Streptozotocin (STZ)-induced diabetic mice and heterozygous superoxide dismutase (SOD2+/-) knockout mice were administered APS. The hemodyn...

متن کامل

Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress.

RATIONALE Both fusion and fission contribute to mitochondrial quality control. How unopposed fusion affects survival of cardiomyocytes and left ventricular function in the heart is poorly understood. OBJECTIVE We investigated the role of dynamin-related protein 1 (Drp1), a GTPase that mediates mitochondrial fission, in mediating mitochondrial autophagy, ventricular function, and stress resist...

متن کامل

Age-dependent mitochondrial energy dynamics in the mice heart: Role of superoxide dismutase-2

The aging process alters cardiac physiology, decreases the number of cardiomyocytes and alters the energy metabolism. Mitochondrial dysfunction in aging is believed to cause these functional and phenotypic changes in the heart. Although precise understanding of alterations of mitochondrial respiration in aging is necessary to manage heart diseases in the elderly population conflicting data on t...

متن کامل

Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis.

To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respir...

متن کامل

Maintenance of mitochondrial genomic integrity in the absence of manganese superoxide dismutase in mouse liver hepatocytes☆

Manganese superoxide dismutase, encoded by the Sod2 gene, is a ubiquitously expressed mitochondrial antioxidant enzyme that is essential for mammalian life. Mice born with constitutive genetic knockout of Sod2 do not survive the neonatal stage, which renders the longitudinal study of the biochemical and metabolic effects of Sod2 loss difficult. However, multiple studies have demonstrated that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 281 3  شماره 

صفحات  -

تاریخ انتشار 2001