Performance of the meteorological radiation model during the solar eclipse
نویسندگان
چکیده
Various solar broadband models have been developed in the last half of the 20th century. The driving demand has been the estimation of available solar energy at different locations on earth for various applications. The motivation for such developments, though, has been the ample lack of solar radiation measurements at global scale. Therefore, the main goal of such codes is to generate artificial solar radiation series or calculate the availability of solar energy at a place. One of the broadband models to be developed in the late 80’s was the Meteorological Radiation Model (MRM). The main advantage of MRM over other similar models was its simplicity in acquiring and using the necessary input data, i.e. air temperature, relative humidity, barometric pressure and sunshine duration from any of the many meteorological stations. The present study describes briefly the various steps (versions) of MRM and in greater detail the latest version 5. To show the flexibility and great performance of the MRM, a harsh test of the code under the (almost total) solar eclipse conditions of 29 March 2006 over Athens was performed and comparison of its results with real measurements was made. From this hard comparison it is shown that the MRM can simulate solar radiation during a solar eclipse event as effectively as on a typical day. Because of the main interest in solar energy applications about the total radiation component, MRM focuses on that. For this component, the RMSE and MBE statistical estimators during this study were found to be 7.64% and −1.67% on 29 March as compared to the respective 5.30% and +2.04% for 28 March. This efficiency of MRM even during an eclipse makes the model promising for easy handling of typical situations with even better results. Correspondence to: B. Psiloglou ([email protected])
منابع مشابه
Performance of the MRM model during a solar eclipse
Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract Various solar broadband models have been developed in the last half of the 20th century. The driving demand has been the estimation of available solar ...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملSolar Radiation Estimation from Rainfall and Temperature Data in Arid and Semi-arid Climates of Iran
Precipitation and air temperature data, only, are often recorded at meteorological stations, with radiation beingmeasured at very few weather stations, especially in developing countries. Therefore there arises a need for suitablemodels to estimate solar radiation for a completion of data sets. This paper is about an evaluation of eight models foran estimation of daily solar radiation (Q) from ...
متن کامل