Robust Permanence for Ecological Maps

نویسندگان

  • Gregory Roth
  • Paul L. Salceanu
  • Sebastian J. Schreiber
چکیده

We consider ecological difference equations of the form X i t+1 = X i t Ai(Xt) where X i t is a vector of densities corresponding to the subpopulations of species i (e.g. subpopulations of different ages or living in different patches), Xt = (X 1 t , X 2 t ,. .. , X m t) is state of the entire community, and Ai(Xt) are matrices determining the update rule for species i. These equations are permanent if they are dissipative and the extinction set {X : i X i = 0} is repelling. If permanence persists under perturbations of the matrices Ai(X), the equations are robustly permanent. We provide sufficient and necessary conditions for robust permanence in terms of Lyapunov exponents for invariant measures supported by the extinction set. Applications to ecological and epidemiological models are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Permanence for Ecological Maps | SIAM Journal on Mathematical Analysis | Vol. 49, No. 5 | Society for Industrial and Applied Mathematics

We consider ecological difference equations of the form xt+1 = x i tAi(xt), where x i t is a vector of densities corresponding to the subpopulations of species i (e.g., subpopulations of different ages or living in different patches), xt = (xt , x 2 t , . . . , x m t ) is the state of the entire community, and Ai(xt) are matrices determining the update rule for species i. These equations are pe...

متن کامل

Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations

We present a sufficient condition for robust permanence of ecological (or Kolmogorov) differential equations based on average Liapunov functions. Via the minimax theorem we rederive Schreiber’s sufficient condition [S. Schreiber, J. Differential Equations, 162 (2000), pp. 400–426] in terms of Liapunov exponents and give various generalizations. Then we study robustness of permanence criteria ag...

متن کامل

Robust permanence for ecological equations with internal and external feedbacks.

Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecologica...

متن کامل

A Functional Equation Characterizing Monomial Functions Used in Permanence Theory for Ecological Differential Equations

It is well known that monomial average Liapunov functions of the form R(x1, x2, . . . , xn) = r0 ∏n i=1 x ri i (ri > 0, i = 0, 1, 2, . . . , n) play an eminent role in the permanence theory of ecological (or Kolmogorov) differential equations. A functional equation characterizing the above class of functions is presented.

متن کامل

Evolutionarily Induced Alternative States and Coexistence in Systems with Apparent Competition

Predators often consume multiple prey and by mutually subsidizing a shared predator, the prey may reciprocally harm each other. When predation levels are high, this apparent competition can culminate in a prey species being displaced. Coupling quantitative genetics and Lotka-Volterra models, we study how predator evolution alters this and other ecological outcomes. These models account for a tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017