Face Detection without Bells and Whistles

نویسندگان

  • Markus Mathias
  • Rodrigo Benenson
  • Marco Pedersoli
  • Luc Van Gool
چکیده

Face detection is a mature problem in computer vision. While diverse high performing face detectors have been proposed in the past, we present two surprising new top performance results. First, we show that a properly trained vanilla DPM reaches top performance, improving over commercial and research systems. Second, we show that a detector based on rigid templates similar in structure to the Viola&Jones detector can reach similar top performance on this task. Importantly, we discuss issues with existing evaluation benchmark and propose an improved procedure. Fig. 1. Our proposed HeadHunter detector at the Oscars. Can you spot the one false positive, and one false negatives ? (hint: first rows).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Objects and Agents: How Do They Differ?

Just how different are objects and agents? Some developers consider agents to be objects, but with more bells and whistles. This approach tends to define agents beginning with the phrase, "An agent is an object that ..."—where the definers add their favorite discriminating features. Then, there are those who see agents and objects as different even though they share many things in common. Both ...

متن کامل

Feature Selective Networks for Object Detection

Objects for detection usually have distinct characteristics in different sub-regions and different aspect ratios. However, in prevalent two-stage object detection methods, Region-of-Interest (RoI) features are extracted by RoI pooling with little emphasis on these translation-variant feature components. We present feature selective networks to reform the feature representations of RoIs by explo...

متن کامل

Point Linking Network for Object Detection

Object detection is a core problem in computer vision. With the development of deep ConvNets, the performance of object detectors has been dramatically improved. The deep ConvNets based object detectors mainly focus on regressing the coordinates of bounding box, e.g., Faster-RCNN, YOLO and SSD. Different from these methods that considering bounding box as a whole, we propose a novel object boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014