SU-D-BRA-04: Improvement of Diaphragm Motion Reproducibility in MRI Using Audiovisual Biofeedback for Lung Cancer Radiotherapy.

نویسنده

  • Taeho Kim
چکیده

PURPOSE Previous studies have investigated the effect of AV biofeedback on the external respiratory signal reproducibility. This is the first study investigating the effect of AV biofeedback to improve the motion reproducibility of the internal anatomy. The aim of the project is to test the hypothesis that AV biofeedback improves the diaphragm motion reproducibility. METHODS An AV biofeedback system has been employed with MRI acquisitions. The AV biofeedback system utilized (1) the external marker position on the abdomen using an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for regular breathing and (2) a fast Gradient-Recalled-Echo (fGRE) MR pulse sequence of 3 Tesla GE MRI (GE Healthcare) to monitor the diaphragm motion (200ms). The improvement in the diaphragm motion reproducibility using the AV biofeedback system combined with MRI has been assessed in 26 studies with 13 healthy human subjects. Each subject underwent two studies for assessment of the diaphragm motion reproducibility both with AV biofeedback and without (free breathing). The second study features a reversed order of breathing conditions. The total MRI acquisitions across the 26 studies are 202 measurements including sagittal and coronal planes. RESULTS Average RMSE (root mean square error) of diaphragm displacement obtained from MRI analysis has been reduced from 2.7mm of free breathing to 1.6mm of AV biofeedback breathing (p-value < 0.05). Additionally, the average RMSE of diaphragm motion period was reduced from 1.84s with free breathing to 0.34s with AV biofeedback breathing (p- value < 0.05). 22% of average displacement error was reduced using AV biofeedback in the first study, and 47% reduction in the second study. CONCLUSIONS The study demonstrated the improvement in the diaphragm motion reproducibility using AV biofeedback. This system can provide clinically applicable motion management of the internal anatomy in MRI and for Image Guided Radiotherapy (IGRT).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory‐gated 3D MR i...

متن کامل

Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

Purpose Respiratory variation can increase the variability of tumor position and volume, accounting for larger treatment margins and longer treatment times. Audiovisual biofeedback as a breath-hold technique could be used to improve the reproducibility of lung tumor positions at inhalation and exhalation for the radiation therapy of mobile lung tumors. This study aimed to assess the impact of a...

متن کامل

Investigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy

Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose.  In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...

متن کامل

Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy.

PURPOSE Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing r...

متن کامل

Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging

Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part3  شماره 

صفحات  -

تاریخ انتشار 2012