Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis.

نویسندگان

  • Catarina Costa
  • Joana Nunes
  • André Henriques
  • Nuno P Mira
  • Hironobu Nakayama
  • Hiroji Chibana
  • Miguel C Teixeira
چکیده

OBJECTIVES The ability of opportunistic pathogenic Candida species to persist and invade specific niches in the human host depends on their resistance to natural growth inhibitors and antifungal therapy. This work describes the role of the Candida glabrata drug:H(+) antiporter CgTpo3 (ORF CAGL0I10384g) in this context. METHODS Deletion and cloning of CgTPO3 was achieved using molecular biology tools. C. glabrata strain susceptibility was assayed based on growth in liquid and solid media and through MIC determination. Radiolabelled compound accumulation or HPLC were used for the assessment of the role of CgTpo3 as a drug or polyamine transporter. Quantitative RT-PCR was used for expression analysis. RESULTS CgTpo3 was found to confer resistance to azole drugs in C. glabrata. This protein was found to be localized to the plasma membrane and to decrease the intracellular accumulation of [(3)H]clotrimazole, playing a direct role in its extrusion from pre-loaded C. glabrata cells. CgTPO3 was further found to confer resistance to spermine, complementing the susceptibility phenotypes exhibited by the deletion of its Saccharomyces cerevisiae homologue, TPO3. In spermine-stressed C. glabrata cells, CgTPO3 is transcriptionally activated in a CgPdr1-dependent manner, contributing to a decrease in the intracellular concentration of this polyamine. Clotrimazole exposure was found to lead to the intracellular accumulation of spermine, and pre-exposure to this polyamine was found consistently to lead to increased clotrimazole resistance. CONCLUSIONS Altogether, these results point to a significant role for CgTpo3 in azole drug resistance and in the tolerance to high polyamine concentrations, such as those found in the urogenital tract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clotrimazole Drug Resistance in Candida glabrata Clinical Isolates Correlates with Increased Expression of the Drug:H+ Antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2

For years, antifungal drug resistance in Candida species has been associated to the expression of ATP-Binding Cassette (ABC) multidrug transporters. More recently, a few drug efflux pumps from the Drug:H(+) Antiporter (DHA) family have also been shown to play a role in this process, although to date only the Candida albicans Mdr1 transporter has been demonstrated to be relevant in the clinical ac...

متن کامل

Membrane Proteome-Wide Response to the Antifungal Drug Clotrimazole in Candida glabrata: Role of the Transcription Factor CgPdr1 and the Drug:H+ Antiporters CgTpo1_1 and CgTpo1_2.

Azoles are widely used antifungal drugs. This family of compounds includes triazoles, mostly used in the treatment of systemic infections, and imidazoles, such as clotrimazole, often used in the case of superficial infections. Candida glabrata is the second most common cause of candidemia worldwide and presents higher levels of intrinsic azole resistance when compared with Candida albicans, thu...

متن کامل

Membrane Proteomics Analysis of the Candida glabrata Response to 5-Flucytosine: Unveiling the Role and Regulation of the Drug Efflux Transporters CgFlr1 and CgFlr2

Resistance to 5-flucytosine (5-FC), used as an antifungal drug in combination therapy, compromises its therapeutic action. In this work, the response of the human pathogen Candida glabrata to 5-FC was evaluated at the membrane proteome level, using an iTRAQ-based approach. A total of 32 proteins were found to display significant expression changes in the membrane fraction of cells upon exposure...

متن کامل

The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance

Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H(...

متن کامل

Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1.

The widespread emergence of antifungal drug resistance poses a severe clinical problem. Though predicted to play a role in this phenomenon, the drug:H(+) antiporters (DHA) of the major facilitator superfamily have largely escaped characterization in pathogenic yeasts. This work describes the first DHA from the pathogenic yeast Candida glabrata reported to be involved in antifungal drug resistan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 69 7  شماره 

صفحات  -

تاریخ انتشار 2014