Reduced Coproducts of Compact Hausdorff Spaces
نویسنده
چکیده
By analyzing how one obtains the Stone space of the reduced product of an indexed collection of Boolean algebras from the Stone spaces of those algebras, we derive a topological construction, the "reduced coproduct", which makes sense for indexed collections of arbitrary Tichonov spaces. When the filter in question is an ultrafilter, we show how the "ultracoproduct" can be obtained from the usual topological ultraproduct via a compactification process in the style of Wallman and Frink. We prove theorems dealing with the topological structure of reduced coproducts (especially ultracoproducts) and show in addition how one may use this construction to gain information about the category of compact
منابع مشابه
A new view on fuzzy automata normed linear structure spaces
In this paper, the concept of fuzzy automata normed linear structure spaces is introduced and suitable examples are provided. ;The ;concepts of fuzzy automata $alpha$-open sphere, fuzzy automata $mathscr{N}$-locally compact spaces, fuzzy automata $mathscr{N}$-Hausdorff spaces are also discussed. Some properties related with to fuzzy automata normed linear structure spaces and fuzzy automata $ma...
متن کاملConvergence and quantale-enriched categories
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) ...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملHarsanyi Type Spaces and Final Coalgebras Constructed from Satisfied Theories
This paper connects coalgebra with a long discussion in the foundations of game theory on the modeling of type spaces. We argue that type spaces are coalgebras, that universal type spaces are final coalgebras, and that the modal logics already proposed in the economic theory literature are closely related to those in recent work in coalgebraic modal logic. In the other direction, the categories...
متن کاملModal compact Hausdorff spaces
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 52 شماره
صفحات -
تاریخ انتشار 1987